Abstract
The function of salicylic acid (SA) in hypersensitive cell death was studied in a soybean (Glycine max)-Pseudomonas syringae pv glycinea system. The infection of cell cultures with bacteria leads to a hypersensitive reaction (HR), which is dependent on an appropriate avirulence gene and on low concentrations of SA. The requirement for SA is essential for a process shortly before the onset of the HR-caused cell death 5 to 6 h after infection with bacteria. SA given 10 to 12 h after infection or preincubation cannot rescue the completion of the cell death program. SA does not inhibit catalase or ascorbate peroxidase in soybean. In addition, the in vivo capacity of the cell culture for the rapid metabolism of H2O2 is not altered by SA. This clearly shows that SA is needed for the HR-caused cell death for a reaction downstream of the oxidative burst. Lipid peroxides accumulate during the HR, but the loss of membrane control precedes the generation of lipid peroxides. The accumulation of lipid peroxides in the HR can be prevented by lipid antioxidants. Nevertheless, cell death kinetics remain unaltered in the presence of antioxidants. It is concluded that lipid peroxides are a consequence of cell death, but not the primary cause of it.
Full Text
The Full Text of this article is available as a PDF (892.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bi Y. M., Kenton P., Mur L., Darby R., Draper J. Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J. 1995 Aug;8(2):235–245. doi: 10.1046/j.1365-313x.1995.08020235.x. [DOI] [PubMed] [Google Scholar]
- Chen Z., Silva H., Klessig D. F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 1993 Dec 17;262(5141):1883–1886. doi: 10.1126/science.8266079. [DOI] [PubMed] [Google Scholar]
- Dangl J. L., Dietrich R. A., Richberg M. H. Death Don't Have No Mercy: Cell Death Programs in Plant-Microbe Interactions. Plant Cell. 1996 Oct;8(10):1793–1807. doi: 10.1105/tpc.8.10.1793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delaney T. P., Uknes S., Vernooij B., Friedrich L., Weymann K., Negrotto D., Gaffney T., Gut-Rella M., Kessmann H., Ward E., Ryals J. A central role of salicylic Acid in plant disease resistance. Science. 1994 Nov 18;266(5188):1247–1250. doi: 10.1126/science.266.5188.1247. [DOI] [PubMed] [Google Scholar]
- Durner J., Klessig D. F. Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11312–11316. doi: 10.1073/pnas.92.24.11312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enyedi A. J., Yalpani N., Silverman P., Raskin I. Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2480–2484. doi: 10.1073/pnas.89.6.2480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esterbauer H., Cheeseman K. H. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990;186:407–421. doi: 10.1016/0076-6879(90)86134-h. [DOI] [PubMed] [Google Scholar]
- Kauss H., Jeblick W. Influence of Salicylic Acid on the Induction of Competence for H2O2 Elicitation (Comparison of Ergosterol with Other Elicitors). Plant Physiol. 1996 Jul;111(3):755–763. doi: 10.1104/pp.111.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kauss H., Jeblick W. Pretreatment of Parsley Suspension Cultures with Salicylic Acid Enhances Spontaneous and Elicited Production of H2O2. Plant Physiol. 1995 Jul;108(3):1171–1178. doi: 10.1104/pp.108.3.1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klessig D. F., Malamy J. The salicylic acid signal in plants. Plant Mol Biol. 1994 Dec;26(5):1439–1458. doi: 10.1007/BF00016484. [DOI] [PubMed] [Google Scholar]
- Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994 Nov 18;79(4):583–593. doi: 10.1016/0092-8674(94)90544-4. [DOI] [PubMed] [Google Scholar]
- May M. J., Hammond-Kosack K. E., Jones JDG. Involvement of Reactive Oxygen Species, Glutathione Metabolism, and Lipid Peroxidation in the Cf-Gene-Dependent Defense Response of Tomato Cotyledons Induced by Race-Specific Elicitors of Cladosporium fulvum. Plant Physiol. 1996 Apr;110(4):1367–1379. doi: 10.1104/pp.110.4.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rusterucci C., Stallaert V., Milat M. L., Pugin A., Ricci P., Blein J. P. Relationship between Active Oxygen Species, Lipid Peroxidation, Necrosis, and Phytoalexin Production Induced by Elicitins in Nicotiana. Plant Physiol. 1996 Jul;111(3):885–891. doi: 10.1104/pp.111.3.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rüffer M., Steipe B., Zenk M. H. Evidence against specific binding of salicylic acid to plant catalase. FEBS Lett. 1995 Dec 18;377(2):175–180. doi: 10.1016/0014-5793(95)01334-2. [DOI] [PubMed] [Google Scholar]
- Sanchez-Casas P., Klessig D. F. A Salicylic Acid-Binding Activity and a Salicylic Acid-Inhibitable Catalase Activity Are Present in a Variety of Plant Species. Plant Physiol. 1994 Dec;106(4):1675–1679. doi: 10.1104/pp.106.4.1675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shirasu K., Nakajima H., Rajasekhar V. K., Dixon R. A., Lamb C. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell. 1997 Feb;9(2):261–270. doi: 10.1105/tpc.9.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vernooij B., Uknes S., Ward E., Ryals J. Salicylic acid as a signal molecule in plant-pathogen interactions. Curr Opin Cell Biol. 1994 Apr;6(2):275–279. doi: 10.1016/0955-0674(94)90147-3. [DOI] [PubMed] [Google Scholar]