Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Sep;115(1):299–309. doi: 10.1104/pp.115.1.299

Distribution of Folate Derivatives and Enzymes for Synthesis of 10-Formyltetrahydrofolate in Cytosolic and Mitochondrial Fractions of Pea Leaves.

L Chen 1, S Y Chan 1, E A Cossins 1
PMCID: PMC158486  PMID: 12223808

Abstract

Leaf extracts of 14-d-old pea (Pisum sativum L. cv Homesteader) seedlings were examined for folate derivatives and for 10-formyltetrahydrofolate synthetase (SYN), 5,10-methenyltetrahydrofolate cyclohydrolase (CYC), and 5,10-methylenetetrahydrofolate dehydrogenase (DHY) activities. Microbiological and enzyme assays showed that leaf folates SYN, CYC, and DHY were predominantly cytosolic. Extracts of Percoll gradient-purified mitochondria contained less than 1% of total leaf folate and less that 1% of each enzyme activity. Fractionation of whole-leaf homogenates resulted in the copurification of DHY and CYC (subunit 38 kD) and the isolation of a SYN protein (subunit 66 kD). Polyclonal antibodies were raised against purified cytosolic DHY-CYC (DHY-CYC-Ab) and cytosolic SYN (SYN-Ab), respectively. Immunoblots showed that DHY-CYC-Ab cross-reacted with a mitochondrial protein band (38 kD). Two mitochondrial protein bands (subunit Mr = 40,000 and 44,000) cross-reacted with SYN-Ab. Immunoaffinity chromatography (DHY-CYC-Ab as the immobile ligand) indicated that the bulk of mitochondrial SYN activity was not associated with mitochondrial DHY or CYC. When 9-d-old etiolated pea seedlings were exposed to light for up to 3 d, the specific enzyme activities of DHY-CYC in whole-leaf extracts rose 2-fold and more DHY-CYC-Ab cross-reacting protein was detected. In contrast, the specific activity of SYN fell from 5 to 1 [mu]mol min-1 mg-1 protein and less SYN-Ab cross-reacting protein was detected. The data suggest that in pea leaves, the bulk of one-carbon-substituted tetrahydrofolates and enzymes for the generation of 10-formyltetrahydrofolate are extra-mitochondrial.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appling D. R. Compartmentation of folate-mediated one-carbon metabolism in eukaryotes. FASEB J. 1991 Sep;5(12):2645–2651. doi: 10.1096/fasebj.5.12.1916088. [DOI] [PubMed] [Google Scholar]
  2. Besson V., Rebeille F., Neuburger M., Douce R., Cossins E. A. Effects of tetrahydrofolate polyglutamates on the kinetic parameters of serine hydroxymethyltransferase and glycine decarboxylase from pea leaf mitochondria. Biochem J. 1993 Jun 1;292(Pt 2):425–430. doi: 10.1042/bj2920425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bourguignon J., Vauclare P., Merand V., Forest E., Neuburger M., Douce R. Glycine decarboxylase complex from higher plants. Molecular cloning, tissue distribution and mass spectrometry analyses of the T protein. Eur J Biochem. 1993 Oct 1;217(1):377–386. doi: 10.1111/j.1432-1033.1993.tb18256.x. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Clandinin M. T., Cossins E. A. Localization and interconversion of tetrahydropteroylglutamates in isolated pea mitochondria. Biochem J. 1972 Jun;128(1):29–40. doi: 10.1042/bj1280029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. D'Ari L., Rabinowitz J. C. Purification, characterization, cloning, and amino acid sequence of the bifunctional enzyme 5,10-methylenetetrahydrofolate dehydrogenase/5,10-methenyltetrahydrofolate cyclohydrolase from Escherichia coli. J Biol Chem. 1991 Dec 15;266(35):23953–23958. [PubMed] [Google Scholar]
  7. Dev I. K., Harvey R. J. A complex of N5,N10-methylenetetrahydrofolate dehydrogenase and N5,N10-methenyltetrahydrofolate cyclohydrolase in Escherichia coli. Purification, subunit structure, and allosteric inhibition by N10-formyltetrahydrofolate. J Biol Chem. 1978 Jun 25;253(12):4245–4253. [PubMed] [Google Scholar]
  8. Horne D. W., Briggs W. T., Wagner C. High-pressure liquid chromatographic separation of the naturally occurring folic acid monoglutamate derivatives. Anal Biochem. 1981 Sep 15;116(2):393–397. doi: 10.1016/0003-2697(81)90378-x. [DOI] [PubMed] [Google Scholar]
  9. Horne D. W., Patterson D., Cook R. J. Effect of nitrous oxide inactivation of vitamin B12-dependent methionine synthetase on the subcellular distribution of folate coenzymes in rat liver. Arch Biochem Biophys. 1989 May 1;270(2):729–733. doi: 10.1016/0003-9861(89)90556-0. [DOI] [PubMed] [Google Scholar]
  10. Horne D. W., Patterson D. Lactobacillus casei microbiological assay of folic acid derivatives in 96-well microtiter plates. Clin Chem. 1988 Nov;34(11):2357–2359. [PubMed] [Google Scholar]
  11. Kopriva S., Turner S. R., Rawsthorne S., Bauwe H. T-protein of the glycine decarboxylase multienzyme complex: evidence for partial similarity to formyltetrahydrofolate synthetase. Plant Mol Biol. 1995 Mar;27(6):1215–1220. doi: 10.1007/BF00020895. [DOI] [PubMed] [Google Scholar]
  12. Ljungdahl L. G., O'Brien W. E., Moore M. R., Liu M. T. Methylenetetrahydrofolate dehydrogenase from Clostridium formicoaceticum and methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase (combined) from Clostridium thermoaceticum. Methods Enzymol. 1980;66:599–609. doi: 10.1016/0076-6879(80)66513-6. [DOI] [PubMed] [Google Scholar]
  13. Lovell C. R., Przybyla A., Ljungdahl L. G. Primary structure of the thermostable formyltetrahydrofolate synthetase from Clostridium thermoaceticum. Biochemistry. 1990 Jun 19;29(24):5687–5694. doi: 10.1021/bi00476a007. [DOI] [PubMed] [Google Scholar]
  14. Neuburger M., Rébeillé F., Jourdain A., Nakamura S., Douce R. Mitochondria are a major site for folate and thymidylate synthesis in plants. J Biol Chem. 1996 Apr 19;271(16):9466–9472. doi: 10.1074/jbc.271.16.9466. [DOI] [PubMed] [Google Scholar]
  15. Nour J. M., Rabinowitz J. C. Isolation and sequencing of the cDNA coding for spinach 10-formyltetrahydrofolate synthetase. Comparisons with the yeast, mammalian, and bacterial proteins. J Biol Chem. 1992 Aug 15;267(23):16292–16296. [PubMed] [Google Scholar]
  16. Nour J. M., Rabinowitz J. C. Isolation, characterization, and structural organization of 10-formyltetrahydrofolate synthetase from spinach leaves. J Biol Chem. 1991 Sep 25;266(27):18363–18369. [PubMed] [Google Scholar]
  17. Rébeillé F., Macherel D., Mouillon J. M., Garin J., Douce R. Folate biosynthesis in higher plants: purification and molecular cloning of a bifunctional 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase localized in mitochondria. EMBO J. 1997 Mar 3;16(5):947–957. doi: 10.1093/emboj/16.5.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shingles R., Woodrow L., Grodzinski B. Effects of Glycolate Pathway Intermediates on Glycine Decarboxylation and Serine Synthesis in Pea (Pisum sativum L.). Plant Physiol. 1984 Mar;74(3):705–710. doi: 10.1104/pp.74.3.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stover P., Schirch V. 5-Formyltetrahydrofolate polyglutamates are slow tight binding inhibitors of serine hydroxymethyltransferase. J Biol Chem. 1991 Jan 25;266(3):1543–1550. [PubMed] [Google Scholar]
  20. Stover P., Schirch V. Serine hydroxymethyltransferase catalyzes the hydrolysis of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate. J Biol Chem. 1990 Aug 25;265(24):14227–14233. [PubMed] [Google Scholar]
  21. Strong W. B., Schirch V. In vitro conversion of formate to serine: effect of tetrahydropteroylpolyglutamates and serine hydroxymethyltransferase on the rate of 10-formyltetrahydrofolate synthetase. Biochemistry. 1989 Nov 28;28(24):9430–9439. doi: 10.1021/bi00450a028. [DOI] [PubMed] [Google Scholar]
  22. Turner S. R., Hellens R., Ireland R., Ellis N., Rawsthorne S. The organisation and expression of the genes encoding the mitochondrial glycine decarboxylase complex and serine hydroxymethyltransferase in pea (Pisum sativum). Mol Gen Genet. 1993 Jan;236(2-3):402–408. doi: 10.1007/BF00277140. [DOI] [PubMed] [Google Scholar]
  23. Walker J. L., Oliver D. J. Light-induced increases in the glycine decarboxylase multienzyme complex from pea leaf mitochondria. Arch Biochem Biophys. 1986 Aug 1;248(2):626–638. doi: 10.1016/0003-9861(86)90517-5. [DOI] [PubMed] [Google Scholar]
  24. Whitehead T. R., Rabinowitz J. C. Nucleotide sequence of the Clostridium acidiurici ("Clostridium acidi-urici") gene for 10-formyltetrahydrofolate synthetase shows extensive amino acid homology with the trifunctional enzyme C1-tetrahydrofolate synthase from Saccharomyces cerevisiae. J Bacteriol. 1988 Jul;170(7):3255–3261. doi: 10.1128/jb.170.7.3255-3261.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wilson S. D., Horne D. W. High-performance liquid chromatographic determination of the distribution of naturally occurring folic acid derivatives in rat liver. Anal Biochem. 1984 Nov 1;142(2):529–535. doi: 10.1016/0003-2697(84)90502-5. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES