Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Oct;115(2):335–342. doi: 10.1104/pp.115.2.335

Actin Filaments Modulate Both Stomatal Opening and Inward K+-Channel Activities in Guard Cells of Vicia faba L.

J U Hwang 1, S Suh 1, H Yi 1, J Kim 1, Y Lee 1
PMCID: PMC158491  PMID: 12223811

Abstract

Actin antagonists have previously been shown to alter responses of Commelina communis stomata to physiological stimuli, implicating actin filaments in the control of guard cell volume changes (M. Kim, P.K. Hepler, S.-O. Eun, K.S. Ha, Y. Lee [1995] Plant Physiol 109: 1077-1084). Since K+ channels in the guard cell play an important role in stomatal movements, we examined the possible regulation of K+-channel activities by the state of actin polymerization. Agents affecting actin polymerization altered light-induced stomatal opening and inward K+-channel activities measured by patch clamping in Vicia faba. Cytochalasin D, which induces depolymerization of actin filaments, promoted light-induced stomatal opening and potentiated the inward K+ current in guard cell protoplasts. Phalloidin, a stabilizer of filamentous actin, inhibited both light-induced stomatal opening and inward K+ current. Inward K+-channel activities in outside-out membrane patches showed responses to these agents that support results at the whole-cell current level, suggesting that cytochalasin D facilitates and phalloidin inhibits K+ influx in intact guard cells, thus resulting in enhancement and inhibition of stomatal opening, respectively. To our knowledge, this is the first report that provides evidence that actin filaments may regulate an important physiological process by modulating the activities of ion channels in plant cells.

Full Text

The Full Text of this article is available as a PDF (772.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aderem A. Signal transduction and the actin cytoskeleton: the roles of MARCKS and profilin. Trends Biochem Sci. 1992 Oct;17(10):438–443. doi: 10.1016/0968-0004(92)90016-3. [DOI] [PubMed] [Google Scholar]
  2. Akiba S., Sato T., Fujii T. Evidence for an increase in the association of cytosolic phospholipase A2 with the cytoskeleton of stimulated rabbit platelets. J Biochem. 1993 Jan;113(1):4–6. doi: 10.1093/oxfordjournals.jbchem.a124000. [DOI] [PubMed] [Google Scholar]
  3. Assmann S. M. Signal transduction in guard cells. Annu Rev Cell Biol. 1993;9:345–375. doi: 10.1146/annurev.cb.09.110193.002021. [DOI] [PubMed] [Google Scholar]
  4. Brown S. S., Spudich J. A. Cytochalasin inhibits the rate of elongation of actin filament fragments. J Cell Biol. 1979 Dec;83(3):657–662. doi: 10.1083/jcb.83.3.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cantiello H. F., Prat A. G., Bonventre J. V., Cunningham C. C., Hartwig J. H., Ausiello D. A. Actin-binding protein contributes to cell volume regulatory ion channel activation in melanoma cells. J Biol Chem. 1993 Mar 5;268(7):4596–4599. [PubMed] [Google Scholar]
  6. Cantiello H. F. Role of the actin cytoskeleton on epithelial Na+ channel regulation. Kidney Int. 1995 Oct;48(4):970–984. doi: 10.1038/ki.1995.379. [DOI] [PubMed] [Google Scholar]
  7. Downey G. P., Grinstein S., Sue-A-Quan A., Czaban B., Chan C. K. Volume regulation in leukocytes: requirement for an intact cytoskeleton. J Cell Physiol. 1995 Apr;163(1):96–104. doi: 10.1002/jcp.1041630111. [DOI] [PubMed] [Google Scholar]
  8. Froehner S. C. The submembrane machinery for nicotinic acetylcholine receptor clustering. J Cell Biol. 1991 Jul;114(1):1–7. doi: 10.1083/jcb.114.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goodnight J. A., Mischak H., Kolch W., Mushinski J. F. Immunocytochemical localization of eight protein kinase C isozymes overexpressed in NIH 3T3 fibroblasts. Isoform-specific association with microfilaments, Golgi, endoplasmic reticulum, and nuclear and cell membranes. J Biol Chem. 1995 Apr 28;270(17):9991–10001. doi: 10.1074/jbc.270.17.9991. [DOI] [PubMed] [Google Scholar]
  10. Ibarrondo J., Joubert D., Dufour M. N., Cohen-Solal A., Homburger V., Jard S., Guillon G. Close association of the alpha subunits of Gq and G11 G proteins with actin filaments in WRK1 cells: relation to G protein-mediated phospholipase C activation. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8413–8417. doi: 10.1073/pnas.92.18.8413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ilan N., Moran N., Schwartz A. The Role of Potassium Channels in the Temperature Control of Stomatal Aperture. Plant Physiol. 1995 Jul;108(3):1161–1170. doi: 10.1104/pp.108.3.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kim M., Hepler P. K., Eun S. O., Ha K. S., Lee Y. Actin Filaments in Mature Guard Cells Are Radially Distributed and Involved in Stomatal Movement. Plant Physiol. 1995 Nov;109(3):1077–1084. doi: 10.1104/pp.109.3.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kruse T., Tallman G., Zeiger E. Isolation of Guard Cell Protoplasts from Mechanically Prepared Epidermis of Vicia faba Leaves. Plant Physiol. 1989 Aug;90(4):1382–1386. doi: 10.1104/pp.90.4.1382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lee Y., Lee H. J., Crain R. C., Lee A., Korn S. J. Polyunsaturated fatty acids modulate stomatal aperture and two distinct K+ channel currents in guard cells. Cell Signal. 1994 Feb;6(2):181–186. doi: 10.1016/0898-6568(94)90075-2. [DOI] [PubMed] [Google Scholar]
  15. Li W., Luan S., Schreiber S. L., Assmann S. M. Evidence for protein phosphatase 1 and 2A regulation of K+ channels in two types of leaf cells. Plant Physiol. 1994 Nov;106(3):963–970. doi: 10.1104/pp.106.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Paller M. S. Lateral mobility of Na,K-ATPase and membrane lipids in renal cells. Importance of cytoskeletal integrity. J Membr Biol. 1994 Oct;142(1):127–135. doi: 10.1007/BF00233390. [DOI] [PubMed] [Google Scholar]
  17. Payrastre B., van Bergen en Henegouwen P. M., Breton M., den Hartigh J. C., Plantavid M., Verkleij A. J., Boonstra J. Phosphoinositide kinase, diacylglycerol kinase, and phospholipase C activities associated to the cytoskeleton: effect of epidermal growth factor. J Cell Biol. 1991 Oct;115(1):121–128. doi: 10.1083/jcb.115.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Prat A. G., Cantiello H. F. Nuclear ion channel activity is regulated by actin filaments. Am J Physiol. 1996 May;270(5 Pt 1):C1532–C1543. doi: 10.1152/ajpcell.1996.270.5.C1532. [DOI] [PubMed] [Google Scholar]
  19. Ruknudin A., Song M. J., Sachs F. The ultrastructure of patch-clamped membranes: a study using high voltage electron microscopy. J Cell Biol. 1991 Jan;112(1):125–134. doi: 10.1083/jcb.112.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schroeder J. I., Fang H. H. Inward-rectifying K+ channels in guard cells provide a mechanism for low-affinity K+ uptake. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11583–11587. doi: 10.1073/pnas.88.24.11583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schroeder J. I., Ward J. M., Gassmann W. Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake. Annu Rev Biophys Biomol Struct. 1994;23:441–471. doi: 10.1146/annurev.bb.23.060194.002301. [DOI] [PubMed] [Google Scholar]
  22. Schwiebert E. M., Mills J. W., Stanton B. A. Actin-based cytoskeleton regulates a chloride channel and cell volume in a renal cortical collecting duct cell line. J Biol Chem. 1994 Mar 11;269(10):7081–7089. [PubMed] [Google Scholar]
  23. Sentenac H., Bonneaud N., Minet M., Lacroute F., Salmon J. M., Gaymard F., Grignon C. Cloning and expression in yeast of a plant potassium ion transport system. Science. 1992 May 1;256(5057):663–665. doi: 10.1126/science.1585180. [DOI] [PubMed] [Google Scholar]
  24. Srinivasan Y., Elmer L., Davis J., Bennett V., Angelides K. Ankyrin and spectrin associate with voltage-dependent sodium channels in brain. Nature. 1988 May 12;333(6169):177–180. doi: 10.1038/333177a0. [DOI] [PubMed] [Google Scholar]
  25. Tilly B. C., Edixhoven M. J., Tertoolen L. G., Morii N., Saitoh Y., Narumiya S., de Jonge H. R. Activation of the osmo-sensitive chloride conductance involves P21rho and is accompanied by a transient reorganization of the F-actin cytoskeleton. Mol Biol Cell. 1996 Sep;7(9):1419–1427. doi: 10.1091/mbc.7.9.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tsakiridis T., Vranic M., Klip A. Disassembly of the actin network inhibits insulin-dependent stimulation of glucose transport and prevents recruitment of glucose transporters to the plasma membrane. J Biol Chem. 1994 Nov 25;269(47):29934–29942. [PubMed] [Google Scholar]
  27. Wu W. H., Assmann S. M. A membrane-delimited pathway of G-protein regulation of the guard-cell inward K+ channel. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6310–6314. doi: 10.1073/pnas.91.14.6310. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES