Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Oct;115(2):361–373. doi: 10.1104/pp.115.2.361

Epigenetic transcriptional silencing and 5-azacytidine-mediated reactivation of a complex transgene in rice.

S P Kumpatla 1, W Teng 1, W G Buchholz 1, T C Hall 1
PMCID: PMC158494  PMID: 9342860

Abstract

Despite a growing number of reports indicating non-Mendelian inheritance of transgene expression in monocots, no detailed description of the structure and stability of the transgene exists for transformants generated by direct DNA-transfer techniques, making the cause for these observations difficult to determine. In this paper we describe the complex organization of Btt cryIIIA and bar transgenes in rice (Oryza sativa L.) that displayed aberrant segregation in R1 progeny. Silencing rather than rearrangement of the bar gene was implicated because the herbicide-sensitive R1 plants had a DNA hybridization profile identical to that of the resistant R0 parent and R1 siblings. Genomic DNA analysis revealed substantial methylation of the Ubi1/bar sequences in silenced plants and, to a lesser degree, in herbicide-resistant plants, suggesting that the transgene locus was potentiated for silencing. Nuclease protection and nuclear run-on assays confirmed that silencing was due to transcriptional inactivation. Treatment of R2 progeny of silenced plants with 5-azacytidine resulted in demethylation of the Ubi1 promoter and reactivation of bar gene expression, demonstrating a functional relationship for methylation in gene silencing. These findings indicate that methylation-based silencing may be frequent in cereals transformed by direct DNA protocols that insert multiple, often rearranged sequences.

Full Text

The Full Text of this article is available as a PDF (4.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banks J. A., Masson P., Fedoroff N. Molecular mechanisms in the developmental regulation of the maize Suppressor-mutator transposable element. Genes Dev. 1988 Nov;2(11):1364–1380. doi: 10.1101/gad.2.11.1364. [DOI] [PubMed] [Google Scholar]
  2. Clark A. J., Harold G., Yull F. E. Mammalian cDNA and prokaryotic reporter sequences silence adjacent transgenes in transgenic mice. Nucleic Acids Res. 1997 Mar 1;25(5):1009–1014. doi: 10.1093/nar/25.5.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cornejo M. J., Luth D., Blankenship K. M., Anderson O. D., Blechl A. E. Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol. 1993 Nov;23(3):567–581. doi: 10.1007/BF00019304. [DOI] [PubMed] [Google Scholar]
  4. Doerfler W. Patterns of DNA methylation--evolutionary vestiges of foreign DNA inactivation as a host defense mechanism. A proposal. Biol Chem Hoppe Seyler. 1991 Aug;372(8):557–564. [PubMed] [Google Scholar]
  5. Dorer D. R. Do transgene arrays form heterochromatin in vertebrates? Transgenic Res. 1997 Jan;6(1):3–10. doi: 10.1023/a:1018460413680. [DOI] [PubMed] [Google Scholar]
  6. Fedoroff N. V. About maize transposable elements and development. Cell. 1989 Jan 27;56(2):181–191. doi: 10.1016/0092-8674(89)90891-x. [DOI] [PubMed] [Google Scholar]
  7. Flavell R. B. Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3490–3496. doi: 10.1073/pnas.91.9.3490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gordon-Kamm W. J., Spencer T. M., Mangano M. L., Adams T. R., Daines R. J., Start W. G., O'Brien J. V., Chambers S. A., Adams W. R., Jr, Willetts N. G. Transformation of Maize Cells and Regeneration of Fertile Transgenic Plants. Plant Cell. 1990 Jul;2(7):603–618. doi: 10.1105/tpc.2.7.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kilby N. J., Leyser H. M., Furner I. J. Promoter methylation and progressive transgene inactivation in Arabidopsis. Plant Mol Biol. 1992 Oct;20(1):103–112. doi: 10.1007/BF00029153. [DOI] [PubMed] [Google Scholar]
  10. Martienssen R. A., Richards E. J. DNA methylation in eukaryotes. Curr Opin Genet Dev. 1995 Apr;5(2):234–242. doi: 10.1016/0959-437x(95)80014-x. [DOI] [PubMed] [Google Scholar]
  11. Matzke A. J., Neuhuber F., Park Y. D., Ambros P. F., Matzke M. A. Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes. Mol Gen Genet. 1994 Aug 2;244(3):219–229. doi: 10.1007/BF00285449. [DOI] [PubMed] [Google Scholar]
  12. Matzke M. A., Matzke AJM. How and Why Do Plants Inactivate Homologous (Trans)genes? Plant Physiol. 1995 Mar;107(3):679–685. doi: 10.1104/pp.107.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Meyer P., Heidmann I., Niedenhof I. Differences in DNA-methylation are associated with a paramutation phenomenon in transgenic petunia. Plant J. 1993 Jul;4(1):89–100. doi: 10.1046/j.1365-313x.1993.04010089.x. [DOI] [PubMed] [Google Scholar]
  14. Mittelsten Scheid O., Paszkowski J., Potrykus I. Reversible inactivation of a transgene in Arabidopsis thaliana. Mol Gen Genet. 1991 Aug;228(1-2):104–112. doi: 10.1007/BF00282454. [DOI] [PubMed] [Google Scholar]
  15. Napoli C., Lemieux C., Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell. 1990 Apr;2(4):279–289. doi: 10.1105/tpc.2.4.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Park Y. D., Papp I., Moscone E. A., Iglesias V. A., Vaucheret H., Matzke A. J., Matzke M. A. Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J. 1996 Feb;9(2):183–194. doi: 10.1046/j.1365-313x.1996.09020183.x. [DOI] [PubMed] [Google Scholar]
  17. Rathore K. S., Chowdhury V. K., Hodges T. K. Use of bar as a selectable marker gene and for the production of herbicide-resistant rice plants from protoplasts. Plant Mol Biol. 1993 Mar;21(5):871–884. doi: 10.1007/BF00027118. [DOI] [PubMed] [Google Scholar]
  18. Register J. C., 3rd, Peterson D. J., Bell P. J., Bullock W. P., Evans I. J., Frame B., Greenland A. J., Higgs N. S., Jepson I., Jiao S. Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol Biol. 1994 Sep;25(6):951–961. doi: 10.1007/BF00014669. [DOI] [PubMed] [Google Scholar]
  19. Renckens S., De Greve H., Van Montagu M., Hernalsteens J. P. Petunia plants escape from negative selection against a transgene by silencing the foreign DNA via methylation. Mol Gen Genet. 1992 May;233(1-2):53–64. doi: 10.1007/BF00587561. [DOI] [PubMed] [Google Scholar]
  20. Rossignol J. L., Faugeron G. Gene inactivation triggered by recognition between DNA repeats. Experientia. 1994 Mar 15;50(3):307–317. doi: 10.1007/BF01924014. [DOI] [PubMed] [Google Scholar]
  21. Sabl J. F., Henikoff S. Copy number and orientation determine the susceptibility of a gene to silencing by nearby heterochromatin in Drosophila. Genetics. 1996 Feb;142(2):447–458. doi: 10.1093/genetics/142.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Santi D. V., Garrett C. E., Barr P. J. On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell. 1983 May;33(1):9–10. doi: 10.1016/0092-8674(83)90327-6. [DOI] [PubMed] [Google Scholar]
  23. Sutton D. W., Havstad P. K., Kemp J. D. Synthetic cryIIIA gene from Bacillus thuringiensis improved for high expression in plants. Transgenic Res. 1992 Sep;1(5):228–236. doi: 10.1007/BF02524753. [DOI] [PubMed] [Google Scholar]
  24. Yoder J. A., Bestor T. H. Genetic analysis of genomic methylation patterns in plants and mammals. Biol Chem. 1996 Oct;377(10):605–610. [PubMed] [Google Scholar]
  25. van der Krol A. R., Mur L. A., Beld M., Mol J. N., Stuitje A. R. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell. 1990 Apr;2(4):291–299. doi: 10.1105/tpc.2.4.291. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES