Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Oct;115(2):409–418. doi: 10.1104/pp.115.2.409

Tomato Polyphenol Oxidase (Differential Response of the Polyphenol Oxidase F Promoter to Injuries and Wound Signals).

P Thipyapong 1, J C Steffens 1
PMCID: PMC158498  PMID: 12223816

Abstract

Tomato (Lycopersicon esculentum Mill.) polyphenol oxidases (PPOs) are encoded by a seven-member gene family that exhibits complex patterns of differential expression during growth and differentiation. Antisense down-regulation of constitutive and induced PPO expression results in hypersusceptibility to pathogens, suggesting a critical role for PPO-mediated phenolic oxidation in plant defense. However, the nature and extent of PPO induction and its contribution to resistance are unclear. In this study we examined the inducibility of the tomato PPO gene family. In mature plants PPO transcript levels systemically increased in young leaves (nodes 1-3) when mature leaflets (node 5) were injured. Transcripts hybridizing to PPO E/F-specific probes were the predominant wound-induced PPO mRNAs in young leaves. Analysis of PPO promoter: GUS fusion constructs shows that mechanical wounding and infection by fungal and bacterial pathogens induced transcription of PPO F. Different injuries, salicylic acid, ethylene, and jasmonates elicited distinct, cell-specific and developmental stage-specific patterns of PPO F expression. Whereas jasmonates and mechanical wounding significantly induced PPO F only in young leaves (nodes 1-3), and ethylene induced PPO F only in older leaves (node 7), salicylic acid induced PPO F in stems and foliage at all developmental stages. These results demonstrate that cis-element(s) sufficient for PPO F inducibility reside in the 5[prime] flanking region, and these elements are responsive to a broad range of signals.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolwell G. P. Cyclic AMP, the reluctant messenger in plants. Trends Biochem Sci. 1995 Dec;20(12):492–495. doi: 10.1016/s0968-0004(00)89114-8. [DOI] [PubMed] [Google Scholar]
  2. Boss P. K., Gardner R. C., Janssen B. J., Ross G. S. An apple polyphenol oxidase cDNA is up-regulated in wounded tissues. Plant Mol Biol. 1995 Jan;27(2):429–433. doi: 10.1007/BF00020197. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Castresana C., de Carvalho F., Gheysen G., Habets M., Inzé D., Van Montagu M. Tissue-specific and pathogen-induced regulation of a Nicotiana plumbaginifolia beta-1,3-glucanase gene. Plant Cell. 1990 Dec;2(12):1131–1143. doi: 10.1105/tpc.2.12.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Constabel C. P., Bergey D. R., Ryan C. A. Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):407–411. doi: 10.1073/pnas.92.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Corbin D. R., Sauer N., Lamb C. J. Differential regulation of a hydroxyproline-rich glycoprotein gene family in wounded and infected plants. Mol Cell Biol. 1987 Dec;7(12):4337–4344. doi: 10.1128/mcb.7.12.4337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dixon R. A., Paiva N. L. Stress-Induced Phenylpropanoid Metabolism. Plant Cell. 1995 Jul;7(7):1085–1097. doi: 10.1105/tpc.7.7.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Doares S. H., Narvaez-Vasquez J., Conconi A., Ryan C. A. Salicylic Acid Inhibits Synthesis of Proteinase Inhibitors in Tomato Leaves Induced by Systemin and Jasmonic Acid. Plant Physiol. 1995 Aug;108(4):1741–1746. doi: 10.1104/pp.108.4.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Farmer E. E., Ryan C. A. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7713–7716. doi: 10.1073/pnas.87.19.7713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lacomme C., Roby D. Molecular cloning of a sulfotransferase in Arabidopsis thaliana and regulation during development and in response to infection with pathogenic bacteria. Plant Mol Biol. 1996 Mar;30(5):995–1008. doi: 10.1007/BF00020810. [DOI] [PubMed] [Google Scholar]
  12. Martin G. B., Brommonschenkel S. H., Chunwongse J., Frary A., Ganal M. W., Spivey R., Wu T., Earle E. D., Tanksley S. D. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science. 1993 Nov 26;262(5138):1432–1436. doi: 10.1126/science.7902614. [DOI] [PubMed] [Google Scholar]
  13. Nelson D. E., Raghothama K. G., Singh N. K., Hasegawa P. M., Bressan R. A. Analysis of structure and transcriptional activation of an osmotin gene. Plant Mol Biol. 1992 Jul;19(4):577–588. doi: 10.1007/BF00026784. [DOI] [PubMed] [Google Scholar]
  14. Newman S. M., Eannetta N. T., Yu H., Prince J. P., de Vicente M. C., Tanksley S. D., Steffens J. C. Organisation of the tomato polyphenol oxidase gene family. Plant Mol Biol. 1993 Mar;21(6):1035–1051. doi: 10.1007/BF00023601. [DOI] [PubMed] [Google Scholar]
  15. O'Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ. Ethylene as a Signal Mediating the Wound Response of Tomato Plants. Science. 1996 Dec 13;274(5294):1914–1917. doi: 10.1126/science.274.5294.1914. [DOI] [PubMed] [Google Scholar]
  16. Pearce G., Strydom D., Johnson S., Ryan C. A. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science. 1991 Aug 23;253(5022):895–897. doi: 10.1126/science.253.5022.895. [DOI] [PubMed] [Google Scholar]
  17. Rottmann W. H., Peter G. F., Oeller P. W., Keller J. A., Shen N. F., Nagy B. P., Taylor L. P., Campbell A. D., Theologis A. 1-aminocyclopropane-1-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence. J Mol Biol. 1991 Dec 20;222(4):937–961. doi: 10.1016/0022-2836(91)90587-v. [DOI] [PubMed] [Google Scholar]
  18. Ryder T. B., Hedrick S. A., Bell J. N., Liang X. W., Clouse S. D., Lamb C. J. Organization and differential activation of a gene family encoding the plant defense enzyme chalcone synthase in Phaseolus vulgaris. Mol Gen Genet. 1987 Dec;210(2):219–233. doi: 10.1007/BF00325687. [DOI] [PubMed] [Google Scholar]
  19. Sano H., Ohashi Y. Involvement of small GTP-binding proteins in defense signal-transduction pathways of higher plants. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4138–4144. doi: 10.1073/pnas.92.10.4138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Yu H., Kowalski S. P., Steffens J. C. Comparison of polyphenol oxidase expression in glandular trichomes of solanum and lycopersicon species. Plant Physiol. 1992 Dec;100(4):1885–1890. doi: 10.1104/pp.100.4.1885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yu Y. B., Yang S. F. Biosynthesis of wound ethylene. Plant Physiol. 1980 Aug;66(2):281–285. doi: 10.1104/pp.66.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES