Abstract
Unilateral application of indole-3-acetic acid (IAA) in a lanolin base to hypocotyls of partially etiolated seedlings of wild-type Arabidopsis thaliana induced growth curvature in a dose-dependent manner. The effects of IAA in concentrations from 1 to 1000 microM were studied, with maximum IAA-induced curvature at 100 microM. Three IAA-insensitive mutants were isolated and are all in the same locus, massugu1 (msg1). They did not undergo hypocotyl growth curvature at any of the IAA concentrations tested. msg1 is recessive and is located on chromosome 5. msg 1 hypocotyl growth is resistant to 2,4-dichlorophenoxyacetic acid (2,4-D), but the roots are as sensitive to 2,4-D as the wild type. Growth of the hypocotyl was inhibited to essentially the same extent as the wild type by 6-benzylaminopurine, abscisic acid, and 1-aminocyclopropane-1-carboxylate, an ethylene precursor. The msg1 leaves were also resistant to 2,4-D-induced chlorosis. The gravitropic response of the msg1 hypocotyl takes much more time to initiate and achieve the wild-type degree of curvature, whereas the msg1 roots responded normally to gravity. The mature plants and the etiolated seedlings of msg1 were generally wild type in appearance, except that their rosette leaves were either epinastic or hyponastic. msg1 is the first auxin-insensitive mutant in which it effects are mostly restricted to the hypocotyl and leaf, and msg1 also appears to be auxin specific.
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
- Bennett M. J., Marchant A., Green H. G., May S. T., Ward S. P., Millner P. A., Walker A. R., Schulz B., Feldmann K. A. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science. 1996 Aug 16;273(5277):948–950. doi: 10.1126/science.273.5277.948. [DOI] [PubMed] [Google Scholar]
- Boerjan W., Cervera M. T., Delarue M., Beeckman T., Dewitte W., Bellini C., Caboche M., Van Onckelen H., Van Montagu M., Inzé D. Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell. 1995 Sep;7(9):1405–1419. doi: 10.1105/tpc.7.9.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bullen B. L., Best T. R., Gregg M. M., Barsel S-E, Poff K. L. A direct screening procedure for gravitropism mutants in Arabidopsis thaliana (L.) Heynh. Plant Physiol. 1990;93:525–531. doi: 10.1104/pp.93.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Celenza J. L., Jr, Grisafi P. L., Fink G. R. A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev. 1995 Sep 1;9(17):2131–2142. doi: 10.1101/gad.9.17.2131. [DOI] [PubMed] [Google Scholar]
- Fukaki H., Fujisawa H., Tasaka M. SGR1, SGR2, SGR3: novel genetic loci involved in shoot gravitropism in Arabidopsis thaliana. Plant Physiol. 1996 Mar;110(3):945–955. doi: 10.1104/pp.110.3.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hobbie L., Estelle M. The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 1995 Feb;7(2):211–220. doi: 10.1046/j.1365-313x.1995.7020211.x. [DOI] [PubMed] [Google Scholar]
- King J. J., Stimart D. P., Fisher R. H., Bleecker A. B. A Mutation Altering Auxin Homeostasis and Plant Morphology in Arabidopsis. Plant Cell. 1995 Dec;7(12):2023–2037. doi: 10.1105/tpc.7.12.2023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehman A., Black R., Ecker J. R. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell. 1996 Apr 19;85(2):183–194. doi: 10.1016/s0092-8674(00)81095-8. [DOI] [PubMed] [Google Scholar]
- Leyser H. M., Pickett F. B., Dharmasiri S., Estelle M. Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J. 1996 Sep;10(3):403–413. doi: 10.1046/j.1365-313x.1996.10030403.x. [DOI] [PubMed] [Google Scholar]
- Lincoln C., Britton J. H., Estelle M. Growth and development of the axr1 mutants of Arabidopsis. Plant Cell. 1990 Nov;2(11):1071–1080. doi: 10.1105/tpc.2.11.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moran R., Porath D. Chlorophyll determination in intact tissues using n,n-dimethylformamide. Plant Physiol. 1980 Mar;65(3):478–479. doi: 10.1104/pp.65.3.478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okada K., Ueda J., Komaki M. K., Bell C. J., Shimura Y. Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. Plant Cell. 1991 Jul;3(7):677–684. doi: 10.1105/tpc.3.7.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pickett F. B., Wilson A. K., Estelle M. The aux1 Mutation of Arabidopsis Confers Both Auxin and Ethylene Resistance. Plant Physiol. 1990 Nov;94(3):1462–1466. doi: 10.1104/pp.94.3.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Romano C. P., Cooper M. L., Klee H. J. Uncoupling Auxin and Ethylene Effects in Transgenic Tobacco and Arabidopsis Plants. Plant Cell. 1993 Feb;5(2):181–189. doi: 10.1105/tpc.5.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simmons C., Migliaccio F., Masson P., Caspar T., Soll D. A novel root gravitropism mutant of Arabidopsis thaliana exhibiting altered auxin physiology. Physiol Plant. 1995;93:790–798. [PubMed] [Google Scholar]
- Wilson A. K., Pickett F. B., Turner J. C., Estelle M. A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol Gen Genet. 1990 Jul;222(2-3):377–383. doi: 10.1007/BF00633843. [DOI] [PubMed] [Google Scholar]