Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Oct;115(2):463–469. doi: 10.1104/pp.115.2.463

Differential gene expression in ripening banana fruit.

S K Clendennen 1, G D May 1
PMCID: PMC158503  PMID: 9342866

Abstract

During banana (Musa acuminata L.) fruit ripening ethylene production triggers a developmental cascade that is accompanied by a massive conversion of starch to sugars, an associated burst of respiratory activity, and an increase in protein synthesis. Differential screening of cDNA libraries representing banana pulp at ripening stages 1 and 3 has led to the isolation of 11 nonredundant groups of differentially expressed mRNAs. Identification of these transcripts by partial sequence analysis indicates that two of the mRNAs encode proteins involved in carbohydrate metabolism, whereas others encode proteins thought to be associated with pathogenesis, senescence, or stress responses in plants. Their relative abundance in the pulp and tissue-specific distribution in greenhouse-grown banana plants were determined by northern-blot analyses. The relative abundance of transcripts encoding starch synthase, granule-bound starch synthase, chitinase, lectin, and a type-2 metallothionein decreased in pulp during ripening. Transcripts encoding endochitinase, beta-1,3-glucanase, a thaumatin-like protein, ascorbate peroxidase, metallothionein, and a putative senescence-related protein increased early in ripening. The elucidation of the molecular events associated with banana ripening will facilitate a better understanding and control of these processes, and will allow us to attain our long-term goal of producing candidate oral vaccines in transgenic banana plants.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Beaudry R. M., Severson R. F., Black C. C., Kays S. J. Banana ripening: implications of changes in glycolytic intermediate concentrations, glycolytic and gluconeogenic carbon flux, and fructose 2,6-bisphosphate concentration. Plant Physiol. 1989 Dec;91(4):1436–1444. doi: 10.1104/pp.91.4.1436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coupe S. A., Taylor J. E., Roberts J. A. Characterisation of an mRNA encoding a metallothionein-like protein that accumulates during ethylene-promoted abscission of Sambucus nigra L. leaflets. Planta. 1995;197(3):442–447. doi: 10.1007/BF00196665. [DOI] [PubMed] [Google Scholar]
  4. Dalton D. A., Baird L. M., Langeberg L., Taugher C. Y., Anyan W. R., Vance C. P., Sarath G. Subcellular Localization of Oxygen Defense Enzymes in Soybean (Glycine max [L.] Merr.) Root Nodules. Plant Physiol. 1993 Jun;102(2):481–489. doi: 10.1104/pp.102.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dominguez-Puigjaner E., Vendrell M., Ludevid M. D. Differential Protein Accumulation in Banana Fruit during Ripening. Plant Physiol. 1992 Jan;98(1):157–162. doi: 10.1104/pp.98.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gish W., States D. J. Identification of protein coding regions by database similarity search. Nat Genet. 1993 Mar;3(3):266–272. doi: 10.1038/ng0393-266. [DOI] [PubMed] [Google Scholar]
  7. Kirsch C., Hahlbrock K., Kombrink E. Purification and characterization of extracellular, acidic chitinase isoenzymes from elicitor-stimulated parsley cells. Eur J Biochem. 1993 Apr 1;213(1):419–425. doi: 10.1111/j.1432-1033.1993.tb17777.x. [DOI] [PubMed] [Google Scholar]
  8. Law R. D., Plaxton W. C. Purification and characterization of a novel phosphoenolpyruvate carboxylase from banana fruit. Biochem J. 1995 May 1;307(Pt 3):807–816. doi: 10.1042/bj3070807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ledger S. E., Gardner R. C. Cloning and characterization of five cDNAs for genes differentially expressed during fruit development of kiwifruit (Actinidia deliciosa var. deliciosa). Plant Mol Biol. 1994 Aug;25(5):877–886. doi: 10.1007/BF00028882. [DOI] [PubMed] [Google Scholar]
  10. Medina-Suárez R., Manning K., Fletcher J., Aked J., Bird C. R., Seymour G. B. Gene expression in the pulp of ripening bananas. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products and cDNA cloning of 25 different ripening-related mRNAs. Plant Physiol. 1997 Oct;115(2):453–461. doi: 10.1104/pp.115.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pear J. R., Ridge N., Rasmussen R., Rose R. E., Houck C. M. Isolation and characterization of a fruit-specific cDNA and the corresponding genomic clone from tomato. Plant Mol Biol. 1989 Dec;13(6):639–651. doi: 10.1007/BF00016019. [DOI] [PubMed] [Google Scholar]
  12. Robinson N. J., Tommey A. M., Kuske C., Jackson P. J. Plant metallothioneins. Biochem J. 1993 Oct 1;295(Pt 1):1–10. doi: 10.1042/bj2950001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Spilatro S. R., Cochran G. R., Walker R. E., Cablish K. L., Bittner C. C. Characterization of a new lectin of soybean vegetative tissues. Plant Physiol. 1996 Mar;110(3):825–834. doi: 10.1104/pp.110.3.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stintzi A., Heitz T., Prasad V., Wiedemann-Merdinoglu S., Kauffmann S., Geoffroy P., Legrand M., Fritig B. Plant 'pathogenesis-related' proteins and their role in defense against pathogens. Biochimie. 1993;75(8):687–706. doi: 10.1016/0300-9084(93)90100-7. [DOI] [PubMed] [Google Scholar]
  15. Wang A. J., Li Z. W., Hu M. X., Wang S. D., Leng M. [Ionic mechanism of noradrenaline-induced membrane potential changes of neurones in toad dorsal root ganglion]. Sheng Li Xue Bao. 1989 Apr;41(2):145–152. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES