Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Oct;115(2):561–567. doi: 10.1104/pp.115.2.561

Characterization of Water Channels in Wheat Root Membrane Vesicles.

C M Niemietz 1, S D Tyerman 1
PMCID: PMC158515  PMID: 12223824

Abstract

The functional significance of water channels in wheat (Triticum aestivum L.) root membranes was assessed using light scattering to measure vesicle shrinking in response to osmotic gradients rapidly imposed in a stopped flow apparatus. Vesicles were obtained from both a plasma membrane fraction and a plasma membrane-depleted endomembrane fraction including tonoplast vesicles. Osmotic water permeability (Pos) in the endomembrane fraction was high (Pos= 86.0 [mu]m s-1) with a low activation energy (EA= 23.32 kJ mol-1 [plus or minus] 3.88 SE), and was inhibited by mercurials (K1= 40 [mu]M HgCl2, where K1 is the inhibition constant for half-maximal inhibition), suggesting participation of water channels. A high ratio of osmotic to diffusional permeability (Pd) (using D2O as a tracer, Pos/Pd = 7 [plus or minus] 0.5 SE) also supported this view. For the endomembrane fraction there was a marked decrease in Pos with increasing osmotic gradient that was not observed in the plasma membrane fraction. Osmotic water permeability in the plasma membrane fraction was lower (Pos= 12.5 [mu]m s-1) with a high activation energy (EA= 48.07 kJ mol-1 [plus or minus] 3.63 SE) and no mercury inhibition. Nevertheless, Pos/Pd was found to be substantially higher than one (Pos= 3 [plus or minus] 0.2 SE), indicating that water channels mediated water flow in this fraction, too. Possible distortion of the Pos/Pd value by unstirred layer effects was shown to be unlikely.

Full Text

The Full Text of this article is available as a PDF (781.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barry P. H., Diamond J. M. Effects of unstirred layers on membrane phenomena. Physiol Rev. 1984 Jul;64(3):763–872. doi: 10.1152/physrev.1984.64.3.763. [DOI] [PubMed] [Google Scholar]
  2. Chrispeels M. J., Maurel C. Aquaporins: the molecular basis of facilitated water movement through living plant cells? Plant Physiol. 1994 May;105(1):9–13. doi: 10.1104/pp.105.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cleland R. E., Fujiwara T., Lucas W. J. Plasmodesmal-mediated cell-to-cell transport in wheat roots is modulated by anaerobic stress. Protoplasma. 1994;178(1-2):81–85. doi: 10.1007/BF01404123. [DOI] [PubMed] [Google Scholar]
  4. DAINTY J., GINZBURG B. Z. THE MEASUREMENT OF HYDRAULIC CONDUCTIVITY (OSMOTIC PERMEABILITY TO WATER) OF INTERNODAL CHARACEAN CELLS BY MEANS OF TRANSCELLULAR OSMOSIS. Biochim Biophys Acta. 1964 Jan 27;79:102–111. doi: 10.1016/0926-6577(64)90043-9. [DOI] [PubMed] [Google Scholar]
  5. Daniels M. J., Mirkov T. E., Chrispeels M. J. The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiol. 1994 Dec;106(4):1325–1333. doi: 10.1104/pp.106.4.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Giannini J. L., Gildensoph L. H., Briskin D. P. Selective production of sealed plasma membrane vesicles from red beet (Beta vulgaris L.) storage tissue. Arch Biochem Biophys. 1987 May 1;254(2):621–630. doi: 10.1016/0003-9861(87)90145-7. [DOI] [PubMed] [Google Scholar]
  7. Illsley N. P., Verkman A. S. Serial permeability barriers to water transport in human placental vesicles. J Membr Biol. 1986;94(3):267–278. doi: 10.1007/BF01869722. [DOI] [PubMed] [Google Scholar]
  8. Jansson T., Illsley N. P. Osmotic water permeabilities of human placental microvillous and basal membranes. J Membr Biol. 1993 Mar;132(2):147–155. doi: 10.1007/BF00239004. [DOI] [PubMed] [Google Scholar]
  9. Johansson F., Olbe M., Sommarin M., Larsson C. Brij 58, a polyoxyethylene acyl ether, creates membrane vesicles of uniform sidedness. A new tool to obtain inside-out (cytoplasmic side-out) plasma membrane vesicles. Plant J. 1995 Jan;7(1):165–173. doi: 10.1046/j.1365-313x.1995.07010165.x. [DOI] [PubMed] [Google Scholar]
  10. Kuwahara M., Verkman A. S. Direct fluorescence measurement of diffusional water permeability in the vasopressin-sensitive kidney collecting tubule. Biophys J. 1988 Oct;54(4):587–593. doi: 10.1016/S0006-3495(88)82993-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maurel C., Reizer J., Schroeder J. I., Chrispeels M. J. The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes. EMBO J. 1993 Jun;12(6):2241–2247. doi: 10.1002/j.1460-2075.1993.tb05877.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Meyer M. M., Verkman A. S. Evidence for water channels in renal proximal tubule cell membranes. J Membr Biol. 1987;96(2):107–119. doi: 10.1007/BF01869237. [DOI] [PubMed] [Google Scholar]
  13. Meyer M. M., Verkman A. S. Human platelet osmotic water and nonelectrolyte transport. Am J Physiol. 1986 Oct;251(4 Pt 1):C549–C557. doi: 10.1152/ajpcell.1986.251.4.C549. [DOI] [PubMed] [Google Scholar]
  14. Preston G. M., Jung J. S., Guggino W. B., Agre P. The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J Biol Chem. 1993 Jan 5;268(1):17–20. [PubMed] [Google Scholar]
  15. Rea P. A., Poole R. J. Proton-Translocating Inorganic Pyrophosphatase in Red Beet (Beta vulgaris L.) Tonoplast Vesicles. Plant Physiol. 1985 Jan;77(1):46–52. doi: 10.1104/pp.77.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rice S. A. Hydrodynamic and diffusion considerations of rapid-mix experiments with red blood cells. Biophys J. 1980 Jan;29(1):65–77. doi: 10.1016/S0006-3495(80)85118-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vandegriff K. D., Olson J. S. A quantitative description in three dimensions of oxygen uptake by human red blood cells. Biophys J. 1984 Apr;45(4):825–835. doi: 10.1016/S0006-3495(84)84226-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Verkman A. S., Masur S. K. Very low osmotic water permeability and membrane fluidity in isolated toad bladder granules. J Membr Biol. 1988 Sep;104(3):241–251. doi: 10.1007/BF01872326. [DOI] [PubMed] [Google Scholar]
  19. Verkman A. S., Weyer P., Brown D., Ausiello D. A. Functional water channels are present in clathrin-coated vesicles from bovine kidney but not from brain. J Biol Chem. 1989 Dec 5;264(34):20608–20613. [PubMed] [Google Scholar]
  20. Wayne R., Tazawa M. Nature of the water channels in the internodal cells of Nitellopsis. J Membr Biol. 1990 Jun;116(1):31–39. doi: 10.1007/BF01871669. [DOI] [PubMed] [Google Scholar]
  21. Williams J. B., Kutchai H. Use of a membrane-bound fluorophore to characterize diffusion boundary layers around human erythrocytes. Biophys J. 1986 Feb;49(2):453–458. doi: 10.1016/S0006-3495(86)83654-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Worman H. J., Field M. Osmotic water permeability of small intestinal brush-border membranes. J Membr Biol. 1985;87(3):233–239. doi: 10.1007/BF01871223. [DOI] [PubMed] [Google Scholar]
  23. Ye R. G., Verkman A. S. Simultaneous optical measurement of osmotic and diffusional water permeability in cells and liposomes. Biochemistry. 1989 Jan 24;28(2):824–829. doi: 10.1021/bi00428a062. [DOI] [PubMed] [Google Scholar]
  24. Zhang R., van Hoek A. N., Biwersi J., Verkman A. S. A point mutation at cysteine 189 blocks the water permeability of rat kidney water channel CHIP28k. Biochemistry. 1993 Mar 30;32(12):2938–2941. doi: 10.1021/bi00063a002. [DOI] [PubMed] [Google Scholar]
  25. van Heeswijk M. P., van Os C. H. Osmotic water permeabilities of brush border and basolateral membrane vesicles from rat renal cortex and small intestine. J Membr Biol. 1986;92(2):183–193. doi: 10.1007/BF01870707. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES