Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Oct;115(2):569–576. doi: 10.1104/pp.115.2.569

Two homologous low-temperature-inducible genes from Arabidopsis encode highly hydrophobic proteins.

J Capel 1, J A Jarillo 1, J Salinas 1, J M Martínez-Zapater 1
PMCID: PMC158516  PMID: 9342870

Abstract

We have characterized two related cDNAs (RCI2A and RCI2B) corresponding to genes from Arabidopsis thaliana, the expression of which is transiently induced by low, nonfreezing temperatures. RCI2A and RCI2B encode small (54 amino acids), highly hydrophobic proteins that bear two potential transmembrane domains. They show similarity to proteins encoded by genes from barley (Hordeum vulgare L.) and wheatgrass (Lophophyrum elongatum) that are regulated by different stress conditions. Their high level of sequence homology (78%) and their genomic location in a single restriction fragment suggest that both genes originated as a result of a tandem duplication. However, their regulatory sequences have diverged enough to confer on them different expression patterns. Like most of the cold-inducible plant genes characterized, the expression of RCI2A and RCI2B is also promoted by abscisic acid (ABA) and dehydration but is not a general response to stress conditions, since it is not induced by salt stress or by anaerobiosis. Furthermore, low temperatures are able to induce RCI2A and RCI2B expression in ABA-deficient and -insensitive genetic backgrounds, indicating that both ABA-dependent and -independent pathways regulate the low-temperature responsiveness of these two genes.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aitken A., Collinge D. B., van Heusden B. P., Isobe T., Roseboom P. H., Rosenfeld G., Soll J. 14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins. Trends Biochem Sci. 1992 Dec;17(12):498–501. doi: 10.1016/0968-0004(92)90339-b. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Chang C., Meyerowitz E. M. Molecular cloning and DNA sequence of the Arabidopsis thaliana alcohol dehydrogenase gene. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1408–1412. doi: 10.1073/pnas.83.5.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen H. H., Li P. H., Brenner M. L. Involvement of abscisic Acid in potato cold acclimation. Plant Physiol. 1983 Feb;71(2):362–365. doi: 10.1104/pp.71.2.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen T. H., Gusta L. V. Abscisic Acid-induced freezing resistance in cultured plant cells. Plant Physiol. 1983 Sep;73(1):71–75. doi: 10.1104/pp.73.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cloutier Y., Siminovitch D. Correlation between Cold- and Drought-Induced Frost Hardiness in Winter Wheat and Rye Varieties. Plant Physiol. 1982 Jan;69(1):256–258. doi: 10.1104/pp.69.1.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gilmour S. J., Artus N. N., Thomashow M. F. cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol Biol. 1992 Jan;18(1):13–21. doi: 10.1007/BF00018452. [DOI] [PubMed] [Google Scholar]
  8. Gilmour S. J., Thomashow M. F. Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Mol Biol. 1991 Dec;17(6):1233–1240. doi: 10.1007/BF00028738. [DOI] [PubMed] [Google Scholar]
  9. Gulick P. J., Shen W., An H. ESI3, a stress-induced gene from Lophopyrum elongatum. Plant Physiol. 1994 Feb;104(2):799–800. doi: 10.1104/pp.104.2.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Horvath D. P., McLarney B. K., Thomashow M. F. Regulation of Arabidopsis thaliana L. (Heyn) cor78 in response to low temperature. Plant Physiol. 1993 Dec;103(4):1047–1053. doi: 10.1104/pp.103.4.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jarillo J. A., Leyva A., Salinas J., Martinez-Zapater J. M. Low Temperature Induces the Accumulation of Alcohol Dehydrogenase mRNA in Arabidopsis thaliana, a Chilling-Tolerant Plant. Plant Physiol. 1993 Mar;101(3):833–837. doi: 10.1104/pp.101.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klein P., Kanehisa M., DeLisi C. The detection and classification of membrane-spanning proteins. Biochim Biophys Acta. 1985 May 28;815(3):468–476. doi: 10.1016/0005-2736(85)90375-x. [DOI] [PubMed] [Google Scholar]
  13. Kurkela S., Borg-Franck M. Structure and expression of kin2, one of two cold- and ABA-induced genes of Arabidopsis thaliana. Plant Mol Biol. 1992 Jul;19(4):689–692. doi: 10.1007/BF00026794. [DOI] [PubMed] [Google Scholar]
  14. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  15. Lang V., Mantyla E., Welin B., Sundberg B., Palva E. T. Alterations in Water Status, Endogenous Abscisic Acid Content, and Expression of rab18 Gene during the Development of Freezing Tolerance in Arabidopsis thaliana. Plant Physiol. 1994 Apr;104(4):1341–1349. doi: 10.1104/pp.104.4.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mantyla E., Lang V., Palva E. T. Role of Abscisic Acid in Drought-Induced Freezing Tolerance, Cold Acclimation, and Accumulation of LT178 and RAB18 Proteins in Arabidopsis thaliana. Plant Physiol. 1995 Jan;107(1):141–148. doi: 10.1104/pp.107.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Molina A., García-Olmedo F. Developmental and pathogen-induced expression of three barley genes encoding lipid transfer proteins. Plant J. 1993 Dec;4(6):983–991. doi: 10.1046/j.1365-313x.1993.04060983.x. [DOI] [PubMed] [Google Scholar]
  18. Shinozaki K., Yamaguchi-Shinozaki K. Molecular responses to drought and cold stress. Curr Opin Biotechnol. 1996 Apr;7(2):161–167. doi: 10.1016/s0958-1669(96)80007-3. [DOI] [PubMed] [Google Scholar]
  19. Welin B. V., Olson A., Nylander M., Palva E. T. Characterization and differential expression of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol Biol. 1994 Oct;26(1):131–144. doi: 10.1007/BF00039526. [DOI] [PubMed] [Google Scholar]
  20. Wilhelm K. S., Thomashow M. F. Arabidopsis thaliana cor15b, an apparent homologue of cor15a, is strongly responsive to cold and ABA, but not drought. Plant Mol Biol. 1993 Dec;23(5):1073–1077. doi: 10.1007/BF00021822. [DOI] [PubMed] [Google Scholar]
  21. Yamaguchi-Shinozaki K., Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell. 1994 Feb;6(2):251–264. doi: 10.1105/tpc.6.2.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yamaguchi-Shinozaki K., Shinozaki K. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet. 1993 Jan;236(2-3):331–340. doi: 10.1007/BF00277130. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES