Abstract
(1->3)- and (1->4)-[beta]-glucan synthase activities from higher plants have been physically separated by gel electrophoresis in nondenaturing conditions. The two glucan synthases show different mobilities in native polyacrylamide gels. Further separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a different polypeptide composition in these synthases. Three polypeptides (64, 54, and 32 kD) seem to be common to both synthase activities, whereas two polypeptides (78 and 38 kD) are associated only with callose synthase activity. Twelve polypeptides (170, 136, 108, 96, 83, 72, 66, 60, 52, 48, 42, and 34 kD) appear to be specifically associated with cellulose synthase activity. The successful separation of (1->3)- and (1->-4)-[beta]-glucan synthase activities was based on the manipulation of digitonin concentrations used in the solubilization of membrane proteins. At low dipitomin concentrations (0.05 and 0.1%), the ratio of the cellulose to callose synthase activity was higher. At higher digitonin (0.5-1%) concentrations, the ratio of the callose to cellulose synthase activity was higher. Rosette-like particles with attached product were observed in samples taken from the top of the stacking gel, where only cellulose was synthesized. Smaller (nonrosette) particles were found in the running gel, where only callose was synthesized. These findings suggest that a higher level of subunit organization is required for in vitro cellulose synthesis in comparison with callose assembly.
Full Text
The Full Text of this article is available as a PDF (4.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amor Y., Mayer R., Benziman M., Delmer D. Evidence for a cyclic diguanylic acid-dependent cellulose synthase in plants. Plant Cell. 1991 Sep;3(9):989–995. doi: 10.1105/tpc.3.9.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker M., Vincent C., Reid J. S. Biosynthesis of (1,3)(1,4)-beta-glucan and (1,3)-beta-glucan in barley (Hordeum vulgare L.). Properties of the membrane-bound glucan synthases. Planta. 1995;195(3):331–338. doi: 10.1007/BF00202589. [DOI] [PubMed] [Google Scholar]
- Brown R. M., Jr, Montezinos D. Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc Natl Acad Sci U S A. 1976 Jan;73(1):143–147. doi: 10.1073/pnas.73.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bulawa C. E. Genetics and molecular biology of chitin synthesis in fungi. Annu Rev Microbiol. 1993;47:505–534. doi: 10.1146/annurev.mi.47.100193.002445. [DOI] [PubMed] [Google Scholar]
- Bulone V., Fèvre M. A 34-kilodalton polypeptide is associated with 1,3-beta-glucan synthase activity from the fungus Saprolegnia monoica. FEMS Microbiol Lett. 1996 Jul 1;140(2-3):145–150. doi: 10.1111/j.1574-6968.1996.tb08328.x. [DOI] [PubMed] [Google Scholar]
- Bulone V., Girard V., Fèvre M. Separation and Partial Purification of 1,3-beta-Glucan and 1,4-beta-Glucan Synthases from Saprolegnia. Plant Physiol. 1990 Dec;94(4):1748–1755. doi: 10.1104/pp.94.4.1748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delmer D. P., Solomon M., Read S. M. Direct Photolabeling with [P]UDP-Glucose for Identification of a Subunit of Cotton Fiber Callose Synthase. Plant Physiol. 1991 Feb;95(2):556–563. doi: 10.1104/pp.95.2.556. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dhugga K. S., Ray P. M. A 55 kDa plasma membrane-associated polypeptide is involved in beta-1,3-glucan synthase activity in pea tissue. FEBS Lett. 1991 Jan 28;278(2):283–286. doi: 10.1016/0014-5793(91)80136-q. [DOI] [PubMed] [Google Scholar]
- Dhugga K. S., Ray P. M. Purification of 1,3-beta-D-glucan synthase activity from pea tissue. Two polypeptides of 55 kDa and 70 kDa copurify with enzyme activity. Eur J Biochem. 1994 Mar 15;220(3):943–953. doi: 10.1111/j.1432-1033.1994.tb18698.x. [DOI] [PubMed] [Google Scholar]
- Eiberger L. L., Wasserman B. P. Partial Purification of Digitonin-Solubilized beta-Glucan Synthase from Red Beet Root. Plant Physiol. 1987 Apr;83(4):982–987. doi: 10.1104/pp.83.4.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FEINGOLD D. S., NEUFELD E. F., HASSID W. Z. Synthesis of a beta-1, 3-linked glucan by extracts of Phaseolus aureus seedlings. J Biol Chem. 1958 Oct;233(4):783–788. [PubMed] [Google Scholar]
- Frost D. J., Read S. M., Drake R. R., Haley B. E., Wasserman B. P. Identification of the UDP-glucose-binding polypeptide of callose synthase from Beta vulgaris L. by photoaffinity labeling with 5-azido-UDP-glucose. J Biol Chem. 1990 Feb 5;265(4):2162–2167. [PubMed] [Google Scholar]
- Frost D., Brandt K., Estill C., Goldman R. Partial purification of (1,3)-beta-glucan synthase from Candida albicans. FEMS Microbiol Lett. 1997 Jan 15;146(2):255–261. doi: 10.1111/j.1574-6968.1997.tb10202.x. [DOI] [PubMed] [Google Scholar]
- Gibeaut D. M., Carpita N. C. Synthesis of (1-->3), (1-->4)-beta-D-glucan in the Golgi apparatus of maize coleoptiles. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3850–3854. doi: 10.1073/pnas.90.9.3850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Girard V., Maclachlan G. Modulation of Pea Membrane beta-Glucan Synthase Activity by Calcium, Polycation, Endogenous Protease, and Protease Inhibitor. Plant Physiol. 1987 Sep;85(1):131–136. doi: 10.1104/pp.85.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henry R. J., Stone B. A. Factors Influencing beta-Glucan Synthesis by Particulate Enzymes from Suspension-Cultured Lolium multiflorum Endosperm Cells. Plant Physiol. 1982 Mar;69(3):632–636. doi: 10.1104/pp.69.3.632. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacob S. R., Northcote D. H. In vitro glucan synthesis by membranes of celery petioles: the role of the membrane in determining the type of linkage formed. J Cell Sci Suppl. 1985;2:1–11. doi: 10.1242/jcs.1985.supplement_2.1. [DOI] [PubMed] [Google Scholar]
- Kamat U., Garg R., Sharma C. B. Purification to homogeneity and characterization of a 1,3-beta-glucan (callose) synthase from germinating Arachis hypogaea cotyledons. Arch Biochem Biophys. 1992 Nov 1;298(2):731–739. doi: 10.1016/0003-9861(92)90473-a. [DOI] [PubMed] [Google Scholar]
- Kang M. S., Elango N., Mattia E., Au-Young J., Robbins P. W., Cabib E. Isolation of chitin synthetase from Saccharomyces cerevisiae. Purification of an enzyme by entrapment in the reaction product. J Biol Chem. 1984 Dec 10;259(23):14966–14972. [PubMed] [Google Scholar]
- Kudlicka K., Brown R. M., Jr, Li L., Lee J. H., Shin H., Kuga S. [beta]-Glucan Synthesis in the Cotton Fiber (IV. In Vitro Assembly of the Cellulose I Allomorph). Plant Physiol. 1995 Jan;107(1):111–123. doi: 10.1104/pp.107.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawson S. G., Mason T. L., Sabin R. D., Sloan M. E., Drake R. R., Haley B. E., Wasserman B. P. UDP-Glucose: (1,3)-beta-Glucan Synthase from Daucus carota L. : Characterization, Photoaffinity Labeling, and Solubilization. Plant Physiol. 1989 May;90(1):101–108. doi: 10.1104/pp.90.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li L., Brown R. M., Jr [beta]-Glucan Synthesis in the Cotton Fiber (II. Regulation and Kinetic Properties of [beta]-Glucan Synthases. Plant Physiol. 1993 Apr;101(4):1143–1148. doi: 10.1104/pp.101.4.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li L., Drake R. R., Jr, Clement S., Brown R. M., Jr [beta]-Glucan Synthesis in the Cotton Fiber (III. Identification of UDP-Glucose-Binding Subunits of [beta]-Glucan Synthases by Photoaffinity Labeling with [[beta]-32P]5[prime]-N3-UDP-Glucose. Plant Physiol. 1993 Apr;101(4):1149–1156. doi: 10.1104/pp.101.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin F. C., Brown R. M., Jr, Drake R. R., Jr, Haley B. E. Identification of the uridine 5'-diphosphoglucose (UDP-Glc) binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-UDP-Glc. J Biol Chem. 1990 Mar 25;265(9):4782–4784. [PubMed] [Google Scholar]
- Meikle P. J., Ng K. F., Johnson E., Hoogenraad N. J., Stone B. A. The beta-glucan synthase from Lolium multiflorum. Detergent solubilization, purification using monoclonal antibodies, and photoaffinity labeling with a novel photoreactive pyrimidine analogue of uridine 5'-diphosphoglucose. J Biol Chem. 1991 Nov 25;266(33):22569–22581. [PubMed] [Google Scholar]
- Mueller S. C., Brown R. M., Jr Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. J Cell Biol. 1980 Feb;84(2):315–326. doi: 10.1083/jcb.84.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okuda K., Li L., Kudlicka K., Kuga S., Brown R. M., Jr [beta]-Glucan Synthesis in the Cotton Fiber (I. Identification of [beta]-1,4- and [beta]-1,3-Glucans Synthesized in Vitro). Plant Physiol. 1993 Apr;101(4):1131–1142. doi: 10.1104/pp.101.4.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ordin L., Hall M. A. Studies on Cellulose Synthesis by a Cell-free Oat Coleoptile Enzyme System: Inactivation by Airborne Oxidants. Plant Physiol. 1967 Feb;42(2):205–212. doi: 10.1104/pp.42.2.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pear J. R., Kawagoe Y., Schreckengost W. E., Delmer D. P., Stalker D. M. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12637–12642. doi: 10.1073/pnas.93.22.12637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Porzio M. A., Pearson A. M. Improved resolution of myofibrillar proteins with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochim Biophys Acta. 1977 Jan 25;490(1):27–34. doi: 10.1016/0005-2795(77)90102-7. [DOI] [PubMed] [Google Scholar]
- Péaud-Lenoël C., Axelos M. Structural features of the beta-glucans enzymatically synthesized from uridine diphosphate glucose by wheat seedlings. FEBS Lett. 1970 Jun 8;8(4):224–228. doi: 10.1016/0014-5793(70)80270-8. [DOI] [PubMed] [Google Scholar]
- Read S. M., Delmer D. P. Inhibition of Mung Bean UDP-Glucose: (1-->3)-beta-Glucan Synthase by UDP-Pyridoxal: Evidence for an Active-Site Amino Group. Plant Physiol. 1987 Dec;85(4):1008–1015. doi: 10.1104/pp.85.4.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saxena I. M., Lin F. C., Brown R. M., Jr Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. Plant Mol Biol. 1990 Nov;15(5):673–683. doi: 10.1007/BF00016118. [DOI] [PubMed] [Google Scholar]
- Saxena I. M., Lin F. C., Brown R. M., Jr Identification of a new gene in an operon for cellulose biosynthesis in Acetobacter xylinum. Plant Mol Biol. 1991 Jun;16(6):947–954. doi: 10.1007/BF00016067. [DOI] [PubMed] [Google Scholar]
- Smith M. M., Stone B. A. Beta-glucan synthesis by cell-free extracts from Lolium multiflorum endosperm. Biochim Biophys Acta. 1973 Jun 20;313(1):72–94. doi: 10.1016/0304-4165(73)90189-x. [DOI] [PubMed] [Google Scholar]
- Wasserman B. P., Wu A., Harriman R. W. Probing the molecular architecture of (1,3)-beta-glucan (callose) synthase: polypeptide depletion studies. Biochem Soc Trans. 1992 Feb;20(1):18–22. doi: 10.1042/bst0200018. [DOI] [PubMed] [Google Scholar]
- Wessel D., Flügge U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141–143. doi: 10.1016/0003-2697(84)90782-6. [DOI] [PubMed] [Google Scholar]
- Wu A., Harriman R. W., Frost D. J., Read S. M., Wasserman B. P. Rapid Enrichment of CHAPS-Solubilized UDP-Glucose: (1,3)-beta-Glucan (Callose) Synthase from Beta vulgaris L. by Product Entrapment : Entrapment Mechanisms and Polypeptide Characterization. Plant Physiol. 1991 Oct;97(2):684–692. doi: 10.1104/pp.97.2.684. [DOI] [PMC free article] [PubMed] [Google Scholar]