Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Oct;115(2):783–791. doi: 10.1104/pp.115.2.783

The Effects of Salicylic Acid and Tobacco Mosaic Virus Infection on the Alternative Oxidase of Tobacco.

A M Lennon 1, U H Neuenschwander 1, M Ribas-Carbo 1, L Giles 1, J A Ryals 1, J N Siedow 1
PMCID: PMC158538  PMID: 12223844

Abstract

Salicylic acid (SA) is a signal in systemic acquired resistance and an inducer of the alternative oxidase protein in tobacco (Nicotiana tabacum cv Xanthi nc) cell suspensions and during thermogenesis in aroid spadices. The effects of SA on the levels of alternative oxidase protein and the pathogenesis-related 1a mRNA (a marker for systemic acquired resistance), and on the partitioning of electrons between the Cyt and alternative pathways were investigated in tobacco. Leaves were treated with 1.0 mM SA and mitochondria isolated at times between 1 h and 3 d after treatment. Alternative oxidase protein increased 2.5-fold within 5 h, reached a maximum (9-fold) after 12 h, and remained at twice the level of control plants after 3 d. Measurements of isotope fractionation of 18O by intact leaf tissue gave a value of 23% at all times, identical to that of control plants, indicating a constant 27 to 30% of electron-flow partitioning to the alternative oxidase independent of treatment with SA. Transgenic NahG tobacco plants that express bacterial salicylate hydroxylase and possess very low levels of SA gave a fractionation of 23% and showed control levels of alternative oxidase protein, suggesting that steady-state alternative oxidase accumulates in an SA-independent manner. Infection of plants with tobacco mosaic virus resulted in an increase in alternative oxidase protein in both infected and systemic leaves, but no increase was observed in comparably infected NahG plants. Total respiration rate and partitioning of electrons to the alternative pathway in virus-infected plants was comparable to that in uninfected controls.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bi Y. M., Kenton P., Mur L., Darby R., Draper J. Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J. 1995 Aug;8(2):235–245. doi: 10.1046/j.1365-313x.1995.08020235.x. [DOI] [PubMed] [Google Scholar]
  2. Chen Z., Ricigliano J. W., Klessig D. F. Purification and characterization of a soluble salicylic acid-binding protein from tobacco. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9533–9537. doi: 10.1073/pnas.90.20.9533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Day D. A., Krab K., Lambers H., Moore A. L., Siedow J. N., Wagner A. M., Wiskich J. T. The Cyanide-Resistant Oxidase: To Inhibit or Not to Inhibit, That Is the Question. Plant Physiol. 1996 Jan;110(1):1–2. doi: 10.1104/pp.110.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Elthon T. E., Nickels R. L., McIntosh L. Monoclonal antibodies to the alternative oxidase of higher plant mitochondria. Plant Physiol. 1989 Apr;89(4):1311–1317. doi: 10.1104/pp.89.4.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Friedrich L., Vernooij B., Gaffney T., Morse A., Ryals J. Characterization of tobacco plants expressing a bacterial salicylate hydroxylase gene. Plant Mol Biol. 1995 Dec;29(5):959–968. doi: 10.1007/BF00014969. [DOI] [PubMed] [Google Scholar]
  6. Gaffney T., Friedrich L., Vernooij B., Negrotto D., Nye G., Uknes S., Ward E., Kessmann H., Ryals J. Requirement of salicylic Acid for the induction of systemic acquired resistance. Science. 1993 Aug 6;261(5122):754–756. doi: 10.1126/science.261.5122.754. [DOI] [PubMed] [Google Scholar]
  7. Hammond-Kosack K. E., Jones J. D. Resistance gene-dependent plant defense responses. Plant Cell. 1996 Oct;8(10):1773–1791. doi: 10.1105/tpc.8.10.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hoefnagel M. H., Millar A. H., Wiskich J. T., Day D. A. Cytochrome and alternative respiratory pathways compete for electrons in the presence of pyruvate in soybean mitochondria. Arch Biochem Biophys. 1995 Apr 20;318(2):394–400. doi: 10.1006/abbi.1995.1245. [DOI] [PubMed] [Google Scholar]
  9. Kapulnik Y., Yalpani N., Raskin I. Salicylic Acid induces cyanide-resistant respiration in tobacco cell-suspension cultures. Plant Physiol. 1992 Dec;100(4):1921–1926. doi: 10.1104/pp.100.4.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lagrimini L. M., Burkhart W., Moyer M., Rothstein S. Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: Molecular analysis and tissue-specific expression. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7542–7546. doi: 10.1073/pnas.84.21.7542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Moore A. L., Siedow J. N. The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria. Biochim Biophys Acta. 1991 Aug 23;1059(2):121–140. doi: 10.1016/s0005-2728(05)80197-5. [DOI] [PubMed] [Google Scholar]
  12. ROSS A. F. Systemic acquired resistance induced by localized virus infections in plants. Virology. 1961 Jul;14:340–358. doi: 10.1016/0042-6822(61)90319-1. [DOI] [PubMed] [Google Scholar]
  13. Raskin I., Turner I. M., Melander W. R. Regulation of heat production in the inflorescences of an Arum lily by endogenous salicylic acid. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2214–2218. doi: 10.1073/pnas.86.7.2214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rhoads D. M., McIntosh L. Cytochrome and Alternative Pathway Respiration in Tobacco (Effects of Salicylic Acid). Plant Physiol. 1993 Nov;103(3):877–883. doi: 10.1104/pp.103.3.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rhoads D. M., McIntosh L. Salicylic Acid Regulation of Respiration in Higher Plants: Alternative Oxidase Expression. Plant Cell. 1992 Sep;4(9):1131–1139. doi: 10.1105/tpc.4.9.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ribas-Carbo M., Berry J. A., Yakir D., Giles L., Robinson S. A., Lennon A. M., Siedow J. N. Electron Partitioning between the Cytochrome and Alternative Pathways in Plant Mitochondria. Plant Physiol. 1995 Nov;109(3):829–837. doi: 10.1104/pp.109.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ribas-Carbo M., Lennon A. M., Robinson S. A., Giles L., Berry J. A., Siedow J. N. The Regulation of Electron Partitioning between the Cytochrome and Alternative Pathways in Soybean Cotyledon and Root Mitochondria. Plant Physiol. 1997 Mar;113(3):903–911. doi: 10.1104/pp.113.3.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Robinson S. A., Yakir D., Ribas-Carbo M., Giles L., Osmond C. B., Siedow J. N., Berry J. A. Measurements of the Engagement of Cyanide-Resistant Respiration in the Crassulacean Acid Metabolism Plant Kalanchoë daigremontiana with the Use of On-Line Oxygen Isotope Discrimination. Plant Physiol. 1992 Nov;100(3):1087–1091. doi: 10.1104/pp.100.3.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Siedow J. N., Umbach A. L. Plant Mitochondrial Electron Transfer and Molecular Biology. Plant Cell. 1995 Jul;7(7):821–831. doi: 10.1105/tpc.7.7.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Uknes S., Mauch-Mani B., Moyer M., Potter S., Williams S., Dincher S., Chandler D., Slusarenko A., Ward E., Ryals J. Acquired resistance in Arabidopsis. Plant Cell. 1992 Jun;4(6):645–656. doi: 10.1105/tpc.4.6.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Umbach A. L., Siedow J. N. Covalent and Noncovalent Dimers of the Cyanide-Resistant Alternative Oxidase Protein in Higher Plant Mitochondria and Their Relationship to Enzyme Activity. Plant Physiol. 1993 Nov;103(3):845–854. doi: 10.1104/pp.103.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vanlerberghe G. C., McLntosh L. Signals Regulating the Expression of the Nuclear Gene Encoding Alternative Oxidase of Plant Mitochondria. Plant Physiol. 1996 Jun;111(2):589–595. doi: 10.1104/pp.111.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vernooij B., Friedrich L., Morse A., Reist R., Kolditz-Jawhar R., Ward E., Uknes S., Kessmann H., Ryals J. Salicylic Acid Is Not the Translocated Signal Responsible for Inducing Systemic Acquired Resistance but Is Required in Signal Transduction. Plant Cell. 1994 Jul;6(7):959–965. doi: 10.1105/tpc.6.7.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ward E. R., Uknes S. J., Williams S. C., Dincher S. S., Wiederhold D. L., Alexander D. C., Ahl-Goy P., Metraux J. P., Ryals J. A. Coordinate Gene Activity in Response to Agents That Induce Systemic Acquired Resistance. Plant Cell. 1991 Oct;3(10):1085–1094. doi: 10.1105/tpc.3.10.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Whelan J., Smith M. K., Meijer M., Yu J. W., Badger M. R., Price G. D., Day D. A. Cloning of an additional cDNA for the alternative oxidase in tobacco. Plant Physiol. 1995 Apr;107(4):1469–1470. doi: 10.1104/pp.107.4.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES