Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Nov;115(3):881–889. doi: 10.1104/pp.115.3.881

Diverse amino acid residues function within the type 1 peroxisomal targeting signal. Implications for the role of accessory residues upstream of the type 1 peroxisomal targeting signal.

R T Mullen 1, M S Lee 1, C R Flynn 1, R N Trelease 1
PMCID: PMC158551  PMID: 9390426

Abstract

The purpose of this study was to determine whether the plant type 1 peroxisomal targeting signal (PTS1) utilizes amino acid residues that do not strictly adhere to the serine-lysine-leucine (SKL) motif (small-basic-hydrophobic residues). Selected residues were appended to the C terminus of chloramphenicol acetyltransferase (CAT) and were tested for their ability to target CAT fusion proteins to glyoxysomes in tobacco (Nicotiana tabacum L.) cv Bright Yellow 2 suspension-cultured cells. CAT was redirected from the cytosol into glyoxysomes by a wide range of residues, i.e. A/C/G/S/T-H/K/ L/N/R-I/L/M/Y. Although L and N at the -2 position (-SLL, -ANL) do not conform to the SKL motif, both functioned, but in a temporally less-efficient manner. Other SKL divergent residues, however, did not target CAT to glyoxysomes, i.e. F or P at the -3 position (-FKL, -PKL), S or T at the -2 position (-SSI, STL), or D at the -1 position (-SKD). The targeting inefficiency of CAT-ANL could be ameliorated when K was included at the -4 position (-KANL). In summary, the plant PTS1 mostly conforms to the SKL motif. For those PTS1s that possess nonconforming residue(s), other residues upstream of the PTS1 appear to function as accessory sequences that enhance the temporal efficiency of peroxisomal targeting.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aitchison J. D., Szilard R. K., Nuttley W. M., Rachubinski R. A. Antibodies directed against a yeast carboxyl-terminal peroxisomal targeting signal specifically recognize peroxisomal proteins from various yeasts. Yeast. 1992 Sep;8(9):721–734. doi: 10.1002/yea.320080905. [DOI] [PubMed] [Google Scholar]
  2. Baker A., Kaplan C. P., Pool M. R. Protein targeting and translocation; a comparative survey. Biol Rev Camb Philos Soc. 1996 Nov;71(4):637–702. doi: 10.1111/j.1469-185x.1996.tb01286.x. [DOI] [PubMed] [Google Scholar]
  3. Banjoko A., Trelease R. N. Development and application of an in vivo plant peroxisome import system. Plant Physiol. 1995 Apr;107(4):1201–1208. doi: 10.1104/pp.107.4.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blattner J., Swinkels B., Dörsam H., Prospero T., Subramani S., Clayton C. Glycosome assembly in trypanosomes: variations in the acceptable degeneracy of a COOH-terminal microbody targeting signal. J Cell Biol. 1992 Dec;119(5):1129–1136. doi: 10.1083/jcb.119.5.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Distel B., Gould S. J., Voorn-Brouwer T., van der Berg M., Tabak H. F., Subramani S. The carboxyl-terminal tripeptide serine-lysine-leucine of firefly luciferase is necessary but not sufficient for peroxisomal import in yeast. New Biol. 1992 Feb;4(2):157–165. [PubMed] [Google Scholar]
  6. Elgersma Y., Vos A., van den Berg M., van Roermund C. W., van der Sluijs P., Distel B., Tabak H. F. Analysis of the carboxyl-terminal peroxisomal targeting signal 1 in a homologous context in Saccharomyces cerevisiae. J Biol Chem. 1996 Oct 18;271(42):26375–26382. doi: 10.1074/jbc.271.42.26375. [DOI] [PubMed] [Google Scholar]
  7. Erdmann R. The peroxisomal targeting signal of 3-oxoacyl-CoA thiolase from Saccharomyces cerevisiae. Yeast. 1994 Jul;10(7):935–944. doi: 10.1002/yea.320100708. [DOI] [PubMed] [Google Scholar]
  8. Fung K., Clayton C. Recognition of a peroxisomal tripeptide entry signal by the glycosomes of Trypanosoma brucei. Mol Biochem Parasitol. 1991 Apr;45(2):261–264. doi: 10.1016/0166-6851(91)90093-l. [DOI] [PubMed] [Google Scholar]
  9. Gietl C., Faber K. N., van der Klei I. J., Veenhuis M. Mutational analysis of the N-terminal topogenic signal of watermelon glyoxysomal malate dehydrogenase using the heterologous host Hansenula polymorpha. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3151–3155. doi: 10.1073/pnas.91.8.3151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gould S. G., Keller G. A., Subramani S. Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J Cell Biol. 1987 Dec;105(6 Pt 2):2923–2931. doi: 10.1083/jcb.105.6.2923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gould S. J., Keller G. A., Hosken N., Wilkinson J., Subramani S. A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol. 1989 May;108(5):1657–1664. doi: 10.1083/jcb.108.5.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hansen H., Didion T., Thiemann A., Veenhuis M., Roggenkamp R. Targeting sequences of the two major peroxisomal proteins in the methylotrophic yeast Hansenula polymorpha. Mol Gen Genet. 1992 Nov;235(2-3):269–278. doi: 10.1007/BF00279370. [DOI] [PubMed] [Google Scholar]
  13. Hayashi M., Aoki M., Kato A., Kondo M., Nishimura M. Transport of chimeric proteins that contain a carboxy-terminal targeting signal into plant microbodies. Plant J. 1996 Aug;10(2):225–234. doi: 10.1046/j.1365-313x.1996.10020225.x. [DOI] [PubMed] [Google Scholar]
  14. Kato A., Hayashi M., Kondo M., Nishimura M. Targeting and processing of a chimeric protein with the N-terminal presequence of the precursor to glyoxysomal citrate synthase. Plant Cell. 1996 Sep;8(9):1601–1611. doi: 10.1105/tpc.8.9.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kragler F., Langeder A., Raupachova J., Binder M., Hartig A. Two independent peroxisomal targeting signals in catalase A of Saccharomyces cerevisiae. J Cell Biol. 1993 Feb;120(3):665–673. doi: 10.1083/jcb.120.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kunce C. M., Trelease R. N., Turley R. B. Purification and biosynthesis of cottonseed (Gossypium hirsutum L.) catalase. Biochem J. 1988 Apr 1;251(1):147–155. doi: 10.1042/bj2510147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lee M. S., Mullen R. T., Trelease R. N. Oilseed isocitrate lyases lacking their essential type 1 peroxisomal targeting signal are piggybacked to glyoxysomes. Plant Cell. 1997 Feb;9(2):185–197. doi: 10.1105/tpc.9.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Motley A., Lumb M. J., Oatey P. B., Jennings P. R., De Zoysa P. A., Wanders R. J., Tabak H. F., Danpure C. J. Mammalian alanine/glyoxylate aminotransferase 1 is imported into peroxisomes via the PTS1 translocation pathway. Increased degeneracy and context specificity of the mammalian PTS1 motif and implications for the peroxisome-to-mitochondrion mistargeting of AGT in primary hyperoxaluria type 1. J Cell Biol. 1995 Oct;131(1):95–109. doi: 10.1083/jcb.131.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Olsen L. J., Ettinger W. F., Damsz B., Matsudaira K., Webb M. A., Harada J. J. Targeting of glyoxysomal proteins to peroxisomes in leaves and roots of a higher plant. Plant Cell. 1993 Aug;5(8):941–952. doi: 10.1105/tpc.5.8.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Osumi T., Tsukamoto T., Hata S., Yokota S., Miura S., Fujiki Y., Hijikata M., Miyazawa S., Hashimoto T. Amino-terminal presequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal targeting. Biochem Biophys Res Commun. 1991 Dec 31;181(3):947–954. doi: 10.1016/0006-291x(91)92028-i. [DOI] [PubMed] [Google Scholar]
  21. Purdue P. E., Lazarow P. B. Peroxisomal biogenesis: multiple pathways of protein import. J Biol Chem. 1994 Dec 2;269(48):30065–30068. [PubMed] [Google Scholar]
  22. Purdue P. E., Lazarow P. B. Targeting of human catalase to peroxisomes is dependent upon a novel COOH-terminal peroxisomal targeting sequence. J Cell Biol. 1996 Aug;134(4):849–862. doi: 10.1083/jcb.134.4.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Small G. M., Szabo L. J., Lazarow P. B. Acyl-CoA oxidase contains two targeting sequences each of which can mediate protein import into peroxisomes. EMBO J. 1988 Apr;7(4):1167–1173. doi: 10.1002/j.1460-2075.1988.tb02927.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sommer J. M., Cheng Q. L., Keller G. A., Wang C. C. In vivo import of firefly luciferase into the glycosomes of Trypanosoma brucei and mutational analysis of the C-terminal targeting signal. Mol Biol Cell. 1992 Jul;3(7):749–759. doi: 10.1091/mbc.3.7.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Subramani S. Protein import into peroxisomes and biogenesis of the organelle. Annu Rev Cell Biol. 1993;9:445–478. doi: 10.1146/annurev.cb.09.110193.002305. [DOI] [PubMed] [Google Scholar]
  26. Swinkels B. W., Gould S. J., Subramani S. Targeting efficiencies of various permutations of the consensus C-terminal tripeptide peroxisomal targeting signal. FEBS Lett. 1992 Jun 29;305(2):133–136. doi: 10.1016/0014-5793(92)80880-p. [DOI] [PubMed] [Google Scholar]
  27. Turley R. B., Choe S. M., Trelease R. N. Characterization of a cDNA clone encoding the complete amino acid sequence of cotton isocitrate lyase. Biochim Biophys Acta. 1990 Jun 21;1049(2):223–226. doi: 10.1016/0167-4781(90)90045-4. [DOI] [PubMed] [Google Scholar]
  28. Veenhuis M. Peroxisome biogenesis and function in Hansenula polymorpha. Cell Biochem Funct. 1992 Sep;10(3):175–184. doi: 10.1002/cbf.290100307. [DOI] [PubMed] [Google Scholar]
  29. Wolins N. E., Donaldson R. P. Binding of the peroxisomal targeting sequence SKL is specified by a low-affinity site in castor bean glyoxysomal membranes. A domain next to the SKL binds to a high-affinity site. Plant Physiol. 1997 Mar;113(3):943–949. doi: 10.1104/pp.113.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. de Hoop M. J., Ab G. Import of proteins into peroxisomes and other microbodies. Biochem J. 1992 Sep 15;286(Pt 3):657–669. doi: 10.1042/bj2860657. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES