Abstract
We have taken advantage of specific reductions in the ribulose-1,5-bisphosphate carboxylase/oxygenase concentration in rbcS antisense mutants of tobacco (Nicotiana tabacum L.) to assess the contribution of source strength (carbohydrate production) to the control of shoot development. Wild-type and antisense plants undergo distinct phases of shoot development that can be distinguished from one another on the basis of differences in stem elongation rates, internode distances, plastochron indices, leaf sizes, and leaf morphologies. An early phase of shoot morphogenesis is markedly prolonged in the antisense plants, and an increased number of leaves emerge during this phase in the mutants. This delay is specific, inasmuch as the duration and expression of traits characteristic of later phases of shoot development proceed normally. In addition to altered shoot developmental patterns, the antisense mutants have enhanced shoot/root ratios and markedly increased leaf longevities. It is likely that these are adaptations that enhance photosynthetic rates. Consistent with this proposal, the total leaf areas and dry weights of the mutant and wild type are similar at flowering. Collectively, our results indicate that source strength regulates the duration of an early phase of tobacco shoot development and the transition to a later phase. We suggest that this phase change may occur in response to the attainment of a threshold source strength, which is delayed in the mutant plants.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dudley M., Poethig R. S. The effect of a heterochronic mutation, Teopod2, on the cell lineage of the maize shoot. Development. 1991 Mar;111(3):733–739. doi: 10.1242/dev.111.3.733. [DOI] [PubMed] [Google Scholar]
- Dudley M., Poethig R. S. The heterochronic Teopod1 and Teopod2 mutations of maize are expressed non-cell-autonomously. Genetics. 1993 Feb;133(2):389–399. doi: 10.1093/genetics/133.2.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gutteridge S., Gatenby A. A. Rubisco Synthesis, Assembly, Mechanism, and Regulation. Plant Cell. 1995 Jul;7(7):809–819. doi: 10.1105/tpc.7.7.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudson G. S., Evans J. R., von Caemmerer S., Arvidsson Y. B., Andrews T. J. Reduction of ribulose-1,5-bisphosphate carboxylase/oxygenase content by antisense RNA reduces photosynthesis in transgenic tobacco plants. Plant Physiol. 1992 Jan;98(1):294–302. doi: 10.1104/pp.98.1.294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang C. Z., Rodermel S. R. Regulation of Photosynthesis during Leaf Development in RbcS Antisense DNA Mutants of Tobacco. Plant Physiol. 1995 Jan;107(1):215–224. doi: 10.1104/pp.107.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koch K. E. CARBOHYDRATE-MODULATED GENE EXPRESSION IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):509–540. doi: 10.1146/annurev.arplant.47.1.509. [DOI] [PubMed] [Google Scholar]
- Lawson E. J., Poethig R. S. Shoot development in plants: time for a change. Trends Genet. 1995 Jul;11(7):263–268. doi: 10.1016/s0168-9525(00)89072-1. [DOI] [PubMed] [Google Scholar]
- Masle J., Hudson G. S., Badger M. R. Effects of Ambient CO2 Concentration on Growth and Nitrogen Use in Tobacco (Nicotiana tabacum) Plants Transformed with an Antisense Gene to the Small Subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase. Plant Physiol. 1993 Dec;103(4):1075–1088. doi: 10.1104/pp.103.4.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDaniel C. N. Determination for growth pattern in axillary buds of Nicotiana tabacum L. Dev Biol. 1978 Sep;66(1):250–255. doi: 10.1016/0012-1606(78)90288-9. [DOI] [PubMed] [Google Scholar]
- McDaniel C. N., Singer S. R., Smith S. M. Development states associated with the floral transition. Dev Biol. 1992 Sep;153(1):59–69. doi: 10.1016/0012-1606(92)90091-t. [DOI] [PubMed] [Google Scholar]
- Miziorko H. M., Lorimer G. H. Ribulose-1,5-bisphosphate carboxylase-oxygenase. Annu Rev Biochem. 1983;52:507–535. doi: 10.1146/annurev.bi.52.070183.002451. [DOI] [PubMed] [Google Scholar]
- Poethig R. S. Phase change and the regulation of shoot morphogenesis in plants. Science. 1990 Nov 16;250(4983):923–930. doi: 10.1126/science.250.4983.923. [DOI] [PubMed] [Google Scholar]
- Rodermel S. R., Abbott M. S., Bogorad L. Nuclear-organelle interactions: nuclear antisense gene inhibits ribulose bisphosphate carboxylase enzyme levels in transformed tobacco plants. Cell. 1988 Nov 18;55(4):673–681. doi: 10.1016/0092-8674(88)90226-7. [DOI] [PubMed] [Google Scholar]
- Singer S. R., McDaniel C. N. Floral determination in internode tissues of day-neutral tobacco first occurs many nodes below the apex. Proc Natl Acad Sci U S A. 1987 May;84(9):2790–2792. doi: 10.1073/pnas.84.9.2790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith S. M., McDaniel C. N. The maryland mammoth allele and rooting both perturb the fate of florally determined apices in Nicotiana tabacum. Dev Biol. 1992 Sep;153(1):176–184. doi: 10.1016/0012-1606(92)90103-n. [DOI] [PubMed] [Google Scholar]
- Sonnewald U., Willmitzer L. Molecular approaches to sink-source interactions. Plant Physiol. 1992 Aug;99(4):1267–1270. doi: 10.1104/pp.99.4.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sussex I. M. Developmental programming of the shoot meristem. Cell. 1989 Jan 27;56(2):225–229. doi: 10.1016/0092-8674(89)90895-7. [DOI] [PubMed] [Google Scholar]
