Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Nov;115(3):939–947. doi: 10.1104/pp.115.3.939

Heat treatment results in a loss of transgene-encoded activities in several tobacco lines.

K Neumann 1, W Dröge-Laser 1, S Köhne 1, I Broer 1
PMCID: PMC158557  PMID: 9390430

Abstract

Heat treatment (37 degrees C) of transgenic tobacco (Nicotiana tabacum) plants led to a reversible reduction or complete loss of transgene-encoded activities in about 40% of 10 independent transformants carrying the luciferase-coding region fused to the 355 cauliflower mosaic virus or the soybean small subunit promoter and the nopaline synthase promoter driving the neomycin phosphotransferase gene, whereas the other lines had temperature-tolerant activities. Temperature sensitivity or tolerance of transgene-encoded activities was heritable. In some of the lines, temperature sensitivity of the transgene-encoded activities depended on the stage of development, occurring in either seedlings (40% luciferase and 50% neomycin phosphotransferase) or adult plants (both 40%). The phenomenon did not correlate with copy numbers or the homo- or hemizygous state of the transgenes. In lines harboring a temperature-sensitive luciferase activity, reduction of bioluminescence was observed after 2 to 3 h at 37 degrees C. Activity was regained after 2 h of subsequent cultivation at 25 degrees C. Irrespective of the reaction to the heat treatment, the level of luciferase RNA was slightly increased at 37 degrees C. Only in lines showing temperature sensitivity of transgene-encoded activities was the amount of luciferase and neomycin phosphotransferase strongly reduced. In sterile culture, heat treatment for 15 d did not cause visible damage or changes in plant morphology. In all plants tested a slight induction of the heat-shock response was observed at 37 degrees C.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bevan M., Barnes W. M., Chilton M. D. Structure and transcription of the nopaline synthase gene region of T-DNA. Nucleic Acids Res. 1983 Jan 25;11(2):369–385. doi: 10.1093/nar/11.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dean C., Jones J., Favreau M., Dunsmuir P., Bedbrook J. Influence of flanking sequences on variability in expression levels of an introduced gene in transgenic tobacco plants. Nucleic Acids Res. 1988 Oct 11;16(19):9267–9283. doi: 10.1093/nar/16.19.9267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dhaese P., De Greve H., Gielen J., Seurinck L., Van Montagu M., Schell J. Identification of sequences involved in the polyadenylation of higher plant nuclear transcripts using Agrobacterium T-DNA genes as models. EMBO J. 1983;2(3):419–426. doi: 10.1002/j.1460-2075.1983.tb01439.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dorlhac de Borne F., Vincentz M., Chupeau Y., Vaucheret H. Co-suppression of nitrate reductase host genes and transgenes in transgenic tobacco plants. Mol Gen Genet. 1994 Jun 15;243(6):613–621. doi: 10.1007/BF00279570. [DOI] [PubMed] [Google Scholar]
  5. Fang R. X., Nagy F., Sivasubramaniam S., Chua N. H. Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell. 1989 Jan;1(1):141–150. doi: 10.1105/tpc.1.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flavell R. B. Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3490–3496. doi: 10.1073/pnas.91.9.3490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fobert P. R., Miki B. L., Iyer V. N. Detection of gene regulatory signals in plants revealed by T-DNA-mediated fusions. Plant Mol Biol. 1991 Oct;17(4):837–851. doi: 10.1007/BF00037065. [DOI] [PubMed] [Google Scholar]
  8. Gallie D. R., Caldwell C., Pitto L. Heat Shock Disrupts Cap and Poly(A) Tail Function during Translation and Increases mRNA Stability of Introduced Reporter mRNA. Plant Physiol. 1995 Aug;108(4):1703–1713. doi: 10.1104/pp.108.4.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Herrera-Estrella L., Block M. D., Messens E., Hernalsteens J. P., Montagu M. V., Schell J. Chimeric genes as dominant selectable markers in plant cells. EMBO J. 1983;2(6):987–995. doi: 10.1002/j.1460-2075.1983.tb01532.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kagan-Zur V., Tieman D. M., Marlow S. J., Handa A. K. Differential regulation of polygalacturonase and pectin methylesterase gene expression during and after heat stress in ripening tomato (Lycopersicon esculentum Mill.) fruits. Plant Mol Biol. 1995 Dec;29(6):1101–1110. doi: 10.1007/BF00020455. [DOI] [PubMed] [Google Scholar]
  11. Koncz C., Németh K., Rédei G. P., Schell J. T-DNA insertional mutagenesis in Arabidopsis. Plant Mol Biol. 1992 Dec;20(5):963–976. doi: 10.1007/BF00027166. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Lurie S., Handros A., Fallik E., Shapira R. Reversible Inhibition of Tomato Fruit Gene Expression at High Temperature (Effects on Tomato Fruit Ripening). Plant Physiol. 1996 Apr;110(4):1207–1214. doi: 10.1104/pp.110.4.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Márton L., Hrouda M., Pécsváradi A., Czakó M. T-DNA-insert-independent mutations induced in transformed plant cells during Agrobacterium co-cultivation. Transgenic Res. 1994 Sep;3(5):317–325. doi: 10.1007/BF01973592. [DOI] [PubMed] [Google Scholar]
  15. Nagel N. E., Cevc G., Kirchner S. The mechanism of the solute-induced chain interdigitation in phosphatidylcholine vesicles and characterization of the isothermal phase transitions by means of dynamic light scattering. Biochim Biophys Acta. 1992 Nov 9;1111(2):263–269. doi: 10.1016/0005-2736(92)90319-h. [DOI] [PubMed] [Google Scholar]
  16. Nap J. P., van Spanje M., Dirkse W. G., Baarda G., Mlynarova L., Loonen A., Grondhuis P., Stiekema W. J. Activity of the promoter of the Lhca3.St.1 gene, encoding the potato apoprotein 2 of the light-harvesting complex of Photosystem I, in transgenic potato and tobacco plants. Plant Mol Biol. 1993 Nov;23(3):605–612. doi: 10.1007/BF00019307. [DOI] [PubMed] [Google Scholar]
  17. Neuhuber F., Park Y. D., Matzke A. J., Matzke M. A. Susceptibility of transgene loci to homology-dependent gene silencing. Mol Gen Genet. 1994 Aug 2;244(3):230–241. doi: 10.1007/BF00285450. [DOI] [PubMed] [Google Scholar]
  18. Neumann D., Nover L., Parthier B., Rieger R., Scharf K. D., Wollgiehn R., zur Nieden U. Heat shock and other stress response systems of plants. Results Probl Cell Differ. 1989;16:1–155. [PubMed] [Google Scholar]
  19. Ow D. W., DE Wet J. R., Helinski D. R., Howell S. H., Wood K. V., Deluca M. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science. 1986 Nov 14;234(4778):856–859. doi: 10.1126/science.234.4778.856. [DOI] [PubMed] [Google Scholar]
  20. Peach C., Velten J. Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol. 1991 Jul;17(1):49–60. doi: 10.1007/BF00036805. [DOI] [PubMed] [Google Scholar]
  21. Schöffl F., Rieping M., Baumann G., Bevan M., Angermüller S. The function of plant heat shock promoter elements in the regulated expression of chimaeric genes in transgenic tobacco. Mol Gen Genet. 1989 Jun;217(2-3):246–253. doi: 10.1007/BF02464888. [DOI] [PubMed] [Google Scholar]
  22. Vaucheret H., Palauqui J. C., Elmayan T., Moffatt B. Molecular and genetic analysis of nitrite reductase co-suppression in transgenic tobacco plants. Mol Gen Genet. 1995 Aug 21;248(3):311–317. doi: 10.1007/BF02191598. [DOI] [PubMed] [Google Scholar]
  23. Walter C., Broer I., Hillemann D., Pühler A. High frequency, heat treatment-induced inactivation of the phosphinothricin resistance gene in transgenic single cell suspension cultures of Medicago sativa. Mol Gen Genet. 1992 Nov;235(2-3):189–196. doi: 10.1007/BF00279360. [DOI] [PubMed] [Google Scholar]
  24. de Carvalho F., Gheysen G., Kushnir S., Van Montagu M., Inzé D., Castresana C. Suppression of beta-1,3-glucanase transgene expression in homozygous plants. EMBO J. 1992 Jul;11(7):2595–2602. doi: 10.1002/j.1460-2075.1992.tb05324.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES