Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Nov;115(3):959–969. doi: 10.1104/pp.115.3.959

Differential patterns of expression of the Arabidopsis PHYB, PHYD, and PHYE phytochrome genes.

L Goosey 1, L Palecanda 1, R A Sharrock 1
PMCID: PMC158559  PMID: 9390432

Abstract

The Arabidopsis thaliana phyB, phyD, and phyE phytochrome apoproteins show higher amino acid sequence similarity to each other than to phyA or phyC, they are the most recently evolved members of this photoreceptor family, and they may interact in regulating photomorphogenesis. The expression patterns of translational fusions of the 5' upstream regions of the PHYB, PHYD, and PHYE genes to the beta-glucuronidase (GUS) coding sequence were compared. PD-GUS and PE-GUS fusions were 5- to 10-fold less active than a PB-GUS fusion, but all three promoter regions drove expression of the reporter gene in all stages of the plant's life cycle. Over the first 10 d of seedling growth, the PHYB and PHYD promoters were more active in the dark than in the light, whereas the opposite was true of the PHYE promoter. Unlike the PB-GUS construct, which was expressed in most parts of seedlings and mature plants, the PD-GUS and PE-GUS transgenes showed differential expression, notably in leaves, flower organs, and root tips. Tissue sections showed that the three promoters are coexpressed in at least some leaf cells. Hence, the PHYB, PHYD, and PHYE genes differ in expression pattern but these patterns overlap and interaction of these receptor forms within individual cells is possible.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam E., Kozma-Bognar L., Kolar C., Schafer E., Nagy F. The Tissue-Specific Expression of a Tobacco Phytochrome B Gene. Plant Physiol. 1996 Apr;110(4):1081–1088. doi: 10.1104/pp.110.4.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aukerman M. J., Hirschfeld M., Wester L., Weaver M., Clack T., Amasino R. M., Sharrock R. A. A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing. Plant Cell. 1997 Aug;9(8):1317–1326. doi: 10.1105/tpc.9.8.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Botto J. F., Sanchez R. A., Whitelam G. C., Casal J. J. Phytochrome A Mediates the Promotion of Seed Germination by Very Low Fluences of Light and Canopy Shade Light in Arabidopsis. Plant Physiol. 1996 Feb;110(2):439–444. doi: 10.1104/pp.110.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Dehesh K., Franci C., Sharrock R. A., Somers D. E., Welsch J. A., Quail P. H. The Arabidopsis phytochrome A gene has multiple transcription start sites and a promoter sequence motif homologous to the repressor element of monocot phytochrome A genes. Photochem Photobiol. 1994 Mar;59(3):379–384. doi: 10.1111/j.1751-1097.1994.tb05051.x. [DOI] [PubMed] [Google Scholar]
  6. Edwards K., Johnstone C., Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991 Mar 25;19(6):1349–1349. doi: 10.1093/nar/19.6.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Neuhaus G., Bowler C., Kern R., Chua N. H. Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways. Cell. 1993 Jun 4;73(5):937–952. doi: 10.1016/0092-8674(93)90272-r. [DOI] [PubMed] [Google Scholar]
  9. Nick P., Ehmann B., Furuya M., Schafer E. Cell Communication, Stochastic Cell Responses, and Anthocyanin Pattern in Mustard Cotyledons. Plant Cell. 1993 May;5(5):541–552. doi: 10.1105/tpc.5.5.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pratt L. H., Cordonnier-Pratt M. M., Hauser B., Caboche M. Tomato contains two differentially expressed genes encoding B-type phytochromes, neither of which can be considered an ortholog of Arabidopsis phytochrome B. Planta. 1995;197(1):203–206. doi: 10.1007/BF00239958. [DOI] [PubMed] [Google Scholar]
  11. Quail P. H., Boylan M. T., Parks B. M., Short T. W., Xu Y., Wagner D. Phytochromes: photosensory perception and signal transduction. Science. 1995 May 5;268(5211):675–680. doi: 10.1126/science.7732376. [DOI] [PubMed] [Google Scholar]
  12. Reed J. W., Nagpal P., Poole D. S., Furuya M., Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell. 1993 Feb;5(2):147–157. doi: 10.1105/tpc.5.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Shinomura T., Nagatani A., Hanzawa H., Kubota M., Watanabe M., Furuya M. Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8129–8133. doi: 10.1073/pnas.93.15.8129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Somers D. E., Quail P. H. Phytochrome-Mediated Light Regulation of PHYA- and PHYB-GUS Transgenes in Arabidopsis thaliana Seedlings. Plant Physiol. 1995 Feb;107(2):523–534. doi: 10.1104/pp.107.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Somers D. E., Quail P. H. Temporal and spatial expression patterns of PHYA and PHYB genes in Arabidopsis. Plant J. 1995 Mar;7(3):413–427. doi: 10.1046/j.1365-313x.1995.7030413.x. [DOI] [PubMed] [Google Scholar]
  16. Somers D. E., Sharrock R. A., Tepperman J. M., Quail P. H. The hy3 Long Hypocotyl Mutant of Arabidopsis Is Deficient in Phytochrome B. Plant Cell. 1991 Dec;3(12):1263–1274. doi: 10.1105/tpc.3.12.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES