Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Nov;115(3):1109–1117. doi: 10.1104/pp.115.3.1109

RNase Activities Are Reduced Concomitantly with Conservation of Total Cellular RNA and Ribosomes in O2-Deprived Seedling Roots of Maize.

S L Fennoy 1, S Jayachandran 1, J Bailey-Serres 1
PMCID: PMC158575  PMID: 12223861

Abstract

The effect of O2 deprivation on the activities of RNases and levels of total cellular RNA and ribosomes in seedling roots of maize (Zea mays L.) was investigated. Sodium dodecyl sulfate-polyacrylamide gels containing RNA were used to distinguish RNase isoenzymes by apparent molecular mass. Since O2 deprivation causes a decrease in cytosolic pH from approximately pH 7.4 to 6.4 and an elevation in cytosolic Ca2+, RNase levels were examined in the physiological range of cytosolic pH and in the presence of Ca2+, Mg2+, Zn2+, ethylenediaminetetracetate, or ethyleneglycol-bis([beta]-aminoethyl ether)-N,N[prime]-tetraacetic acid. The activity of a number of RNases present in aerobic roots was reduced in response to O2 deprivation. Several RNases with a pH optimum of 6.4 were rapidly down-regulated by O2 deprivation. Spectrophotometric assay of extracts revealed that RNase activity was higher at pH 6.4 than at 7.2, and ethylenediaminetetracetate-insensitive RNase activity decreased in response to O2 deprivation. The decrease in RNase activity was correlated with no loss of total cellular RNA or ribosomes, despite a 4-fold decrease in run-on transcription of rRNA in isolated nuclei. Regulation of RNase activity may facilitate the conservation of nontranslating ribosomes and poorly translated mRNAs during O2 deprivation.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel S., Blume B., Glund K. Evidence for RNA-Oligonucleotides in Plant Vacuoles Isolated from Cultured Tomato Cells. Plant Physiol. 1990 Nov;94(3):1163–1171. doi: 10.1104/pp.94.3.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bailey-Serres J., Dawe R. K. Both 5' and 3' sequences of maize adh1 mRNA are required for enhanced translation under low-oxygen conditions. Plant Physiol. 1996 Oct;112(2):685–695. doi: 10.1104/pp.112.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bailey-Serres J., Freeling M. Hypoxic stress-induced changes in ribosomes of maize seedling roots. Plant Physiol. 1990 Nov;94(3):1237–1243. doi: 10.1104/pp.94.3.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blank A., McKeon T. A. Expression of Three RNase Activities during Natural and Dark-Induced Senescence of Wheat Leaves. Plant Physiol. 1991 Dec;97(4):1409–1413. doi: 10.1104/pp.97.4.1409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blank A., McKeon T. A. Single-strand-preferring nuclease activity in wheat leaves is increased in senescence and is negatively photoregulated. Proc Natl Acad Sci U S A. 1989 May;86(9):3169–3173. doi: 10.1073/pnas.86.9.3169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boller T., Kende H. Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiol. 1979 Jun;63(6):1123–1132. doi: 10.1104/pp.63.6.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chang S. C., Gallie D. R. RNase Activity Decreases following a Heat Shock in Wheat Leaves and Correlates with Its Posttranslational Modification. Plant Physiol. 1997 Apr;113(4):1253–1263. doi: 10.1104/pp.113.4.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Glisin V., Crkvenjakov R., Byus C. Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry. 1974 Jun 4;13(12):2633–2637. doi: 10.1021/bi00709a025. [DOI] [PubMed] [Google Scholar]
  11. Green P. J. Control of mRNA Stability in Higher Plants. Plant Physiol. 1993 Aug;102(4):1065–1070. doi: 10.1104/pp.102.4.1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jost W., Bak H., Glund K., Terpstra P., Beintema J. J. Amino acid sequence of an extracellular, phosphate-starvation-induced ribonuclease from cultured tomato (Lycopersicon esculentum) cells. Eur J Biochem. 1991 May 23;198(1):1–6. doi: 10.1111/j.1432-1033.1991.tb15978.x. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Löffler A., Abel S., Jost W., Beintema J. J., Glund K. Phosphate-Regulated Induction of Intracellular Ribonucleases in Cultured Tomato (Lycopersicon esculentum) Cells. Plant Physiol. 1992 Apr;98(4):1472–1478. doi: 10.1104/pp.98.4.1472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McKeon T. A., Lyman M. L., Prestamo G. Purification and characterization of two ribonucleases from developing tomato fruit. Arch Biochem Biophys. 1991 Nov 1;290(2):303–311. doi: 10.1016/0003-9861(91)90545-t. [DOI] [PubMed] [Google Scholar]
  16. Roberts J. K., Callis J., Jardetzky O., Walbot V., Freeling M. Cytoplasmic acidosis as a determinant of flooding intolerance in plants. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6029–6033. doi: 10.1073/pnas.81.19.6029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rowland L. J., Strommer J. N. Anaerobic treatment of maize roots affects transcription of Adh1 and transcript stability. Mol Cell Biol. 1986 Oct;6(10):3368–3372. doi: 10.1128/mcb.6.10.3368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sachs M. M., Freeling M., Okimoto R. The anaerobic proteins of maize. Cell. 1980 Jul;20(3):761–767. doi: 10.1016/0092-8674(80)90322-0. [DOI] [PubMed] [Google Scholar]
  19. Subbaiah C. C., Zhang J., Sachs M. M. Involvement of intracellular calcium in anaerobic gene expression and survival of maize seedlings. Plant Physiol. 1994 May;105(1):369–376. doi: 10.1104/pp.105.1.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tanzer M. M., Meagher R. B. Faithful degradation of soybean rbcS mRNA in vitro. Mol Cell Biol. 1994 Apr;14(4):2640–2650. doi: 10.1128/mcb.14.4.2640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Taylor C. B., Bariola P. A., delCardayré S. B., Raines R. T., Green P. J. RNS2: a senescence-associated RNase of Arabidopsis that diverged from the S-RNases before speciation. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5118–5122. doi: 10.1073/pnas.90.11.5118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Thompson D. M., Tanzer M. M., Meagher R. B. Degradation products of the mRNA encoding the small subunit of ribulose-1,5-bisphosphate carboxylase in soybean and transgenic petunia. Plant Cell. 1992 Jan;4(1):47–58. doi: 10.1105/tpc.4.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Trewavas A. The Turnover of Nucleic Acids in Lemna minor. Plant Physiol. 1970 Jun;45(6):742–751. doi: 10.1104/pp.45.6.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yen Y., Green P. J. Identification and Properties of the Major Ribonucleases of Arabidopsis thaliana. Plant Physiol. 1991 Dec;97(4):1487–1493. doi: 10.1104/pp.97.4.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES