Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Nov;115(3):1135–1143. doi: 10.1104/pp.115.3.1135

Analysis of wild-type and mutant plant nitrate reductase expressed in the methylotrophic yeast Pichia pastoris.

W Su 1, J A Mertens 1, K Kanamaru 1, W H Campbell 1, N M Crawford 1
PMCID: PMC158578  PMID: 9390442

Abstract

Recombinant Arabidopsis thaliana NADH:nitrate reductase (NR; EC 1.6.6.1) was produced in the methylotrophic yeast Pichia pastoris and purified to near-electrophoretic homogeneity. Purified enzyme had the spectral and kinetic properties typical of highly purified NR from natural plant sources. Site-directed mutagenesis altering several key residues and regions was carried out, and the mutant enzyme forms were expressed in P. pastoris. When the invariant cysteine residue, cysteine-191, in the molybdo-pterin region of the A. thaliana NIA2 protein was replaced with serine or alanine, the NR protein was still produced but was inactive, showing that this residue is essential for enzyme activity. Deletions or substitutions of the conserved N terminus of NR retained activity and the ability to be inactivated in vitro when incubated with ATP. Enzyme with a histidine sequence appended to the N terminus was still active and was easily purified using metal-chelate affinity chromatography. These results demonstrate that P. pastoris is a useful and reliable system for producing recombinant holo-NR from plants.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann M., Huber J. L., Liao P. C., Gage D. A., Huber S. C. The inhibitor protein of phosphorylated nitrate reductase from spinach (Spinacia oleracea) leaves is a 14-3-3 protein. FEBS Lett. 1996 Jun 3;387(2-3):127–131. doi: 10.1016/0014-5793(96)00478-4. [DOI] [PubMed] [Google Scholar]
  2. Bachmann M., Shiraishi N., Campbell W. H., Yoo B. C., Harmon A. C., Huber S. C. Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase. Plant Cell. 1996 Mar;8(3):505–517. doi: 10.1105/tpc.8.3.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barber M. J., Neame P. J. A conserved cysteine in molybdenum oxotransferases. J Biol Chem. 1990 Dec 5;265(34):20912–20915. [PubMed] [Google Scholar]
  4. Barber M. J., Notton B. A. Spinach Nitrate Reductase : Effects of Ionic Strength and pH on the Full and Partial Enzyme Activities. Plant Physiol. 1990 Jun;93(2):537–540. doi: 10.1104/pp.93.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Becker D. M., Guarente L. High-efficiency transformation of yeast by electroporation. Methods Enzymol. 1991;194:182–187. doi: 10.1016/0076-6879(91)94015-5. [DOI] [PubMed] [Google Scholar]
  6. Calza R, Huttner E, Vincentz M, Rouzé P, Galangau F, Vaucheret H, Chérel I, Meyer C, Kronenberger J, Caboche M. Cloning of DNA fragments complementary to tobacco nitrate reductase mRNA and encoding epitopes common to the nitrate reductases from higher plants. Mol Gen Genet. 1987 Oct;209(3):552–562. doi: 10.1007/BF00331162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Campbell W. H. Expression in Escherichia coli of Cytochrome c Reductase Activity from a Maize NADH:Nitrate Reductase Complementary DNA. Plant Physiol. 1992 Jun;99(2):693–699. doi: 10.1104/pp.99.2.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Campbell W. H., Kinghorn K. R. Functional domains of assimilatory nitrate reductases and nitrite reductases. Trends Biochem Sci. 1990 Aug;15(8):315–319. doi: 10.1016/0968-0004(90)90021-3. [DOI] [PubMed] [Google Scholar]
  9. Campbell W. H. Nitrate Reductase Biochemistry Comes of Age. Plant Physiol. 1996 Jun;111(2):355–361. doi: 10.1104/pp.111.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Campbell W. H., Smarrelli J. Purification and Kinetics of Higher Plant NADH:Nitrate Reductase. Plant Physiol. 1978 Apr;61(4):611–616. doi: 10.1104/pp.61.4.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cannons A. C., Barber M. J., Solomonson L. P. Expression and characterization of the heme-binding domain of Chlorella nitrate reductase. J Biol Chem. 1993 Feb 15;268(5):3268–3271. [PubMed] [Google Scholar]
  12. Crawford N. M., Arst H. N., Jr The molecular genetics of nitrate assimilation in fungi and plants. Annu Rev Genet. 1993;27:115–146. doi: 10.1146/annurev.ge.27.120193.000555. [DOI] [PubMed] [Google Scholar]
  13. Crawford N. M. Nitrate: nutrient and signal for plant growth. Plant Cell. 1995 Jul;7(7):859–868. doi: 10.1105/tpc.7.7.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Crawford N. M., Smith M., Bellissimo D., Davis R. W. Sequence and nitrate regulation of the Arabidopsis thaliana mRNA encoding nitrate reductase, a metalloflavoprotein with three functional domains. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5006–5010. doi: 10.1073/pnas.85.14.5006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Douglas P., Morrice N., MacKintosh C. Identification of a regulatory phosphorylation site in the hinge 1 region of nitrate reductase from spinach (Spinacea oleracea) leaves. FEBS Lett. 1995 Dec 18;377(2):113–117. doi: 10.1016/0014-5793(95)01300-8. [DOI] [PubMed] [Google Scholar]
  16. Garde J., Kinghorn J. R., Tomsett A. B. Site-directed mutagenesis of nitrate reductase from Aspergillus nidulans. Identification of some essential and some nonessential amino acids among conserved residues. J Biol Chem. 1995 Mar 24;270(12):6644–6650. doi: 10.1074/jbc.270.12.6644. [DOI] [PubMed] [Google Scholar]
  17. Garrett R. M., Rajagopalan K. V. Molecular cloning of rat liver sulfite oxidase. Expression of a eukaryotic Mo-pterin-containing enzyme in Escherichia coli. J Biol Chem. 1994 Jan 7;269(1):272–276. [PubMed] [Google Scholar]
  18. Garrett R. M., Rajagopalan K. V. Site-directed mutagenesis of recombinant sulfite oxidase: identification of cysteine 207 as a ligand of molybdenum. J Biol Chem. 1996 Mar 29;271(13):7387–7391. [PubMed] [Google Scholar]
  19. Hagenson M. J. Production of recombinant proteins in the methylotrophic yeast Pichia pastoris. Bioprocess Technol. 1991;12:193–212. [PubMed] [Google Scholar]
  20. Huber J. L., Huber S. C., Campbell W. H., Redinbaugh M. G. Reversible light/dark modulation of spinach leaf nitrate reductase activity involves protein phosphorylation. Arch Biochem Biophys. 1992 Jul;296(1):58–65. doi: 10.1016/0003-9861(92)90544-7. [DOI] [PubMed] [Google Scholar]
  21. Hyde G. E., Wilberding J. A., Meyer A. L., Campbell E. R., Campbell W. H. Monoclonal antibody-based immunoaffinity chromatography for purifying corn and squash NADH: nitrate reductases. Evidence for an interchain disulfide bond in nitrate reductase. Plant Mol Biol. 1989 Aug;13(2):233–246. doi: 10.1007/BF00016141. [DOI] [PubMed] [Google Scholar]
  22. Kaiser W. M., Huber S. C. Posttranslational Regulation of Nitrate Reductase in Higher Plants. Plant Physiol. 1994 Nov;106(3):817–821. doi: 10.1104/pp.106.3.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. LaBrie S. T., Crawford N. M. A glycine to aspartic acid change in the MoCo domain of nitrate reductase reduces both activity and phosphorylation levels in Arabidopsis. J Biol Chem. 1994 May 20;269(20):14497–14501. [PubMed] [Google Scholar]
  24. Lu G., Campbell W. H., Schneider G., Lindqvist Y. Crystal structure of the FAD-containing fragment of corn nitrate reductase at 2.5 A resolution: relationship to other flavoprotein reductases. Structure. 1994 Sep 15;2(9):809–821. doi: 10.1016/s0969-2126(94)00082-4. [DOI] [PubMed] [Google Scholar]
  25. Lu G., Lindqvist Y., Schneider G., Dwivedi U., Campbell W. Structural studies on corn nitrate reductase: refined structure of the cytochrome b reductase fragment at 2.5 A, its ADP complex and an active-site mutant and modeling of the cytochrome b domain. J Mol Biol. 1995 May 19;248(5):931–948. doi: 10.1006/jmbi.1995.0273. [DOI] [PubMed] [Google Scholar]
  26. MacKintosh C. Regulation of spinach-leaf nitrate reductase by reversible phosphorylation. Biochim Biophys Acta. 1992 Oct 6;1137(1):121–126. doi: 10.1016/0167-4889(92)90109-o. [DOI] [PubMed] [Google Scholar]
  27. Meyer C., Levin J. M., Roussel J. M., Rouzé P. Mutational and structural analysis of the nitrate reductase heme domain of Nicotiana plumbaginifolia. J Biol Chem. 1991 Oct 25;266(30):20561–20566. [PubMed] [Google Scholar]
  28. Moorhead G., Douglas P., Morrice N., Scarabel M., Aitken A., MacKintosh C. Phosphorylated nitrate reductase from spinach leaves is inhibited by 14-3-3 proteins and activated by fusicoccin. Curr Biol. 1996 Sep 1;6(9):1104–1113. doi: 10.1016/s0960-9822(02)70677-5. [DOI] [PubMed] [Google Scholar]
  29. Quinn G. B., Trimboli A. J., Prosser I. M., Barber M. J. Spectroscopic and kinetic properties of a recombinant form of the flavin domain of spinach NADH: nitrate reductase. Arch Biochem Biophys. 1996 Mar 1;327(1):151–160. doi: 10.1006/abbi.1996.0103. [DOI] [PubMed] [Google Scholar]
  30. Ratnam K., Shiraishi N., Campbell W. H., Hille R. Spectroscopic and kinetic characterization of the recombinant wild-type and C242S mutant of the cytochrome b reductase fragment of nitrate reductase. J Biol Chem. 1995 Oct 13;270(41):24067–24072. doi: 10.1074/jbc.270.41.24067. [DOI] [PubMed] [Google Scholar]
  31. Schindelin H., Kisker C., Hilton J., Rajagopalan K. V., Rees D. C. Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination. Science. 1996 Jun 14;272(5268):1615–1621. doi: 10.1126/science.272.5268.1615. [DOI] [PubMed] [Google Scholar]
  32. Solomonson L. P., Lorimer G. H., Hall R. L., Borchers R., Bailey J. L. Reduced nicotinamide adenine dinucleotide-nitrate reductase of Chlorella vulgaris. Purification, prosthetic groups, and molecular properties. J Biol Chem. 1975 Jun 10;250(11):4120–4127. [PubMed] [Google Scholar]
  33. Su W., Huber S. C., Crawford N. M. Identification in vitro of a post-translational regulatory site in the hinge 1 region of Arabidopsis nitrate reductase. Plant Cell. 1996 Mar;8(3):519–527. doi: 10.1105/tpc.8.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Truong H. N., Meyer C., Daniel-Vedele F. Characteristics of Nicotiana tabacum nitrate reductase protein produced in Saccharomyces cerevisiae. Biochem J. 1991 Sep 1;278(Pt 2):393–397. doi: 10.1042/bj2780393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wilkinson J. Q., Crawford N. M. Identification and characterization of a chlorate-resistant mutant of Arabidopsis thaliana with mutations in both nitrate reductase structural genes NIA1 and NIA2. Mol Gen Genet. 1993 May;239(1-2):289–297. doi: 10.1007/BF00281630. [DOI] [PubMed] [Google Scholar]
  36. Wilkinson J. Q., Crawford N. M. Identification of the Arabidopsis CHL3 gene as the nitrate reductase structural gene NIA2. Plant Cell. 1991 May;3(5):461–471. doi: 10.1105/tpc.3.5.461. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES