Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Nov;115(3):1185–1194. doi: 10.1104/pp.115.3.1185

A ubiquitous plant housekeeping gene, PAP, encodes a major protein component of bell pepper chromoplasts.

J Pozueta-Romero 1, F Rafia 1, G Houlné 1, C Cheniclet 1, J P Carde 1, M L Schantz 1, R Schantz 1
PMCID: PMC158583  PMID: 9390444

Abstract

We have isolated a cDNA (PAP) corresponding to a single nuclear gene that encodes an approximately 30-kD major protein of bell pepper (Capsicum annuum L.) fruit chromoplasts. RNA and protein analyses revealed that, although at a low level, this gene is also expressed in every organ of the plant, the amount of the corresponding transcript and protein dramatically increasing in the latter stages of fruit development. Western-blot and immunocytochemical analyses of purified chloroplasts from leaves and fruits and of chromoplasts from red fruits showed that the encoded protein is the major component of plastoglobules and fibrils and is localized on the outer surface of these lipid structures. Analyses of PAP in plants belonging to different taxa revealed that it is expressed and highly conserved in both monocotyledonous and dicotyledonous plants. The presence of the protein in plastids not differentiating into chromoplasts indicates that PAP is expressed irrespective of the ontogeny of various plastid lines. In light of our results and since the encoded protein, identical to that previously named ChrB or fibrillin, is present in plastoglobules from several species and accumulates in the fibrils of bell pepper chromoplast, we propose to designate it as a plastid-lipid-associated protein.

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bingham P. M., Levis R., Rubin G. M. Cloning of DNA sequences from the white locus of D. melanogaster by a novel and general method. Cell. 1981 Sep;25(3):693–704. doi: 10.1016/0092-8674(81)90176-8. [DOI] [PubMed] [Google Scholar]
  2. Bouvier F., Hugueney P., d'Harlingue A., Kuntz M., Camara B. Xanthophyll biosynthesis in chromoplasts: isolation and molecular cloning of an enzyme catalyzing the conversion of 5,6-epoxycarotenoid into ketocarotenoid. Plant J. 1994 Jul;6(1):45–54. doi: 10.1046/j.1365-313x.1994.6010045.x. [DOI] [PubMed] [Google Scholar]
  3. Cervantes-Cervantes M., Hadjeb N., Newman L. A., Price C. A. ChrA Is a Carotenoid-Binding Protein in Chromoplasts of Capsicum annuum. Plant Physiol. 1990 Apr;92(4):1241–1243. doi: 10.1104/pp.92.4.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. D'Souza S. E., Ginsberg M. H., Plow E. F. Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Trends Biochem Sci. 1991 Jul;16(7):246–250. doi: 10.1016/0968-0004(91)90096-e. [DOI] [PubMed] [Google Scholar]
  5. Deruère J., Bouvier F., Steppuhn J., Klein A., Camara B., Kuntz M. Structure and expression of two plant genes encoding chromoplast-specific proteins: occurrence of partially spliced transcripts. Biochem Biophys Res Commun. 1994 Mar 30;199(3):1144–1150. doi: 10.1006/bbrc.1994.1350. [DOI] [PubMed] [Google Scholar]
  6. Deruère J., Römer S., d'Harlingue A., Backhaus R. A., Kuntz M., Camara B. Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell. 1994 Jan;6(1):119–133. doi: 10.1105/tpc.6.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gillaspy G., Ben-David H., Gruissem W. Fruits: A Developmental Perspective. Plant Cell. 1993 Oct;5(10):1439–1451. doi: 10.1105/tpc.5.10.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Houlné G., Schantz M. L., Meyer B., Pozueta-Romero J., Schantz R. A chromoplast-specific protein in Capsicum annuum: characterization and expression of the corresponding gene. Curr Genet. 1994 Nov-Dec;26(5-6):524–527. doi: 10.1007/BF00309944. [DOI] [PubMed] [Google Scholar]
  9. Hunt C. M., Hardison R. C., Boyer C. D. Restriction enzyme analysis of tomato chloroplast and chromoplast DNA. Plant Physiol. 1986 Dec;82(4):1145–1147. doi: 10.1104/pp.82.4.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Marano M. R., Carrillo N. Constitutive Transcription and Stable RNA Accumulation in Plastids during the Conversion of Chloroplasts to Chromoplasts in Ripening Tomato Fruits. Plant Physiol. 1992 Nov;100(3):1103–1113. doi: 10.1104/pp.100.3.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Napier J. A., Stobart A. K., Shewry P. R. The structure and biogenesis of plant oil bodies: the role of the ER membrane and the oleosin class of proteins. Plant Mol Biol. 1996 Aug;31(5):945–956. doi: 10.1007/BF00040714. [DOI] [PubMed] [Google Scholar]
  12. Newman L. A., Hadjeb N., Price C. A. Synthesis of Two Chromoplast-Specific Proteins During Fruit Development in Capsicum annuum. Plant Physiol. 1989 Oct;91(2):455–458. doi: 10.1104/pp.91.2.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Oren-Shamir M., Hadjeb N., Newman L. A., Price C. A. Occurrence of the chromoplast protein ChrA correlates with a fruit-color gene in Capsicum annuum. Plant Mol Biol. 1993 Feb;21(3):549–554. doi: 10.1007/BF00028812. [DOI] [PubMed] [Google Scholar]
  14. Pozueta-Romero J., Houlné G., Schantz R. Nonautonomous inverted repeat Alien transposable elements are associated with genes of both monocotyledonous and dicotyledonous plants. Gene. 1996 Jun 1;171(2):147–153. doi: 10.1016/0378-1119(96)00007-8. [DOI] [PubMed] [Google Scholar]
  15. Pozueta-Romero J., Klein M., Houlné G., Schantz M. L., Meyer B., Schantz R. Characterization of a family of genes encoding a fruit-specific wound-stimulated protein of bell pepper (Capsicum annuum): identification of a new family of transposable elements. Plant Mol Biol. 1995 Sep;28(6):1011–1025. doi: 10.1007/BF00032663. [DOI] [PubMed] [Google Scholar]
  16. Pruvot G., Cuiné S., Peltier G., Rey P. Characterization of a novel drought-induced 34-kDa protein located in the thylakoids of Solanum tuberosum L. plants. Planta. 1996;198(3):471–479. doi: 10.1007/BF00620065. [DOI] [PubMed] [Google Scholar]
  17. Simpson D. J., Lee T. H. Plastoglobules of leaf chloroplasts of two cultivars of Capsicum annuum. Cytobios. 1976;15(58-59):139–147. [PubMed] [Google Scholar]
  18. Smirra I., Halevy A. H., Vainstein A. Isolation and Characterization of a Chromoplast-Specific Carotenoid-Associated Protein from Cucumis sativus Corollas. Plant Physiol. 1993 Jun;102(2):491–496. doi: 10.1104/pp.102.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Vishnevetsky M., Ovadis M., Itzhaki H., Levy M., Libal-Weksler Y., Adam Z., Vainstein A. Molecular cloning of a carotenoid-associated protein from Cucumis sativus corollas: homologous genes involved in carotenoid sequestration in chromoplasts. Plant J. 1996 Dec;10(6):1111–1118. doi: 10.1046/j.1365-313x.1996.10061111.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES