Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Nov;115(3):1201–1209. doi: 10.1104/pp.115.3.1201

Expression and characterization of pea chloroplastic glyceraldehyde-3-phosphate dehydrogenase composed of only the B-subunit.

A D Li 1, L E Anderson 1
PMCID: PMC158585  PMID: 9390445

Abstract

A cDNA fragment coding for the pea (Pisum sativum L.) chloroplastic glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13) B-subunit and a truncated form corresponding in length to the A-subunit have been cloned into an expression vector, expressed in the absence of the A-subunit in a gap- Escherichia coli strain, purified, and studied. Like the isolated enzyme from higher plant chloroplasts, the recombinant enzymes have dual specificity for NADPH and NADH. The recombinant glyceraldehyde-3-P dehydrogenases have the same optimal pH as the enzyme isolated from pea chloroplasts. Like the native chloroplast enzyme, the recombinant B-subunit has a marked tendency to form large aggregates, whereas the truncated B-subunit exists as the tetramer. The recombinant B-subunit glyceraldehyde 3-P dehydrogenase is more sensitive to dithiothreitol than its truncated form. It seems likely that a different pair of cysteines is responsible for the redox sensitivity of the activity of the enzyme composed of B-subunits than the cysteine residues implicated in the modulation of the activity of the enzyme composed of A-subunits by previous work in this laboratory.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson L. E., Goldhaber-Gordon I. M., Li D., Tang X. Y., Xiang M., Prakash N. Enzyme-enzyme interaction in the chloroplast: glyceraldehyde-3-phosphate dehydrogenase, triose phosphate isomerase and aldolase. Planta. 1995;196(2):245–255. doi: 10.1007/BF00201381. [DOI] [PubMed] [Google Scholar]
  2. Baalmann E., Backhausen J. E., Rak C., Vetter S., Scheibe R. Reductive modification and nonreductive activation of purified spinach chloroplast NADP-dependent glyceraldehyde-3-phosphate dehydrogenase. Arch Biochem Biophys. 1995 Dec 20;324(2):201–208. doi: 10.1006/abbi.1995.0031. [DOI] [PubMed] [Google Scholar]
  3. Baalmann E., Scheibe R., Cerff R., Martin W. Functional studies of chloroplast glyceraldehyde-3-phosphate dehydrogenase subunits A and B expressed in Escherichia coli: formation of highly active A4 and B4 homotetramers and evidence that aggregation of the B4 complex is mediated by the B subunit carboxy terminus. Plant Mol Biol. 1996 Nov;32(3):505–513. doi: 10.1007/BF00019102. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Cerff R., Chambers S. E. Glyceraldehyde-3-phosphate dehydrogenase (NADP) from Sinapis alba L. Isolation and electrophoretic characterization of isoenzymes. Hoppe Seylers Z Physiol Chem. 1978 Jun;359(6):769–772. [PubMed] [Google Scholar]
  6. Cerff R., Chambers S. E. Subunit structure of higher plant glyceraldehyde-3-phosphate dehydrogenases (EC 1.2.1.12 and EC 1.2.1.13). J Biol Chem. 1979 Jul 10;254(13):6094–6098. [PubMed] [Google Scholar]
  7. Cerff R. Glyceraldehyde-3-phosphate dehydrogenase (NADP) from Sinapis alba L. NAD(P)-induced conformation changes of the enzyme. Eur J Biochem. 1978 Jan 2;82(1):45–53. doi: 10.1111/j.1432-1033.1978.tb11995.x. [DOI] [PubMed] [Google Scholar]
  8. Cerff R., Kloppstech K. Structural diversity and differential light control of mRNAs coding for angiosperm glyceraldehyde-3-phosphate dehydrogenases. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7624–7628. doi: 10.1073/pnas.79.24.7624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cerff R. Quaternary structure of higher plant glyceraldehyde-3-phosphate dehydrogenases. Eur J Biochem. 1979 Feb 15;94(1):243–247. doi: 10.1111/j.1432-1033.1979.tb12891.x. [DOI] [PubMed] [Google Scholar]
  10. Ferri G., Comerio G., Iadarola P., Zapponi M. C., Speranza M. L. Subunit structure and activity of glyceraldehyde-3-phosphate dehydrogenase from spinach chloroplasts. Biochim Biophys Acta. 1978 Jan 12;522(1):19–31. doi: 10.1016/0005-2744(78)90318-2. [DOI] [PubMed] [Google Scholar]
  11. Ferri G., Stoppini M., Meloni M. L., Zapponi M. C., Iadarola P. Chloroplast glyceraldehyde-3-phosphate dehydrogenase (NADP): amino acid sequence of the subunits from isoenzyme I and structural relationship with isoenzyme II. Biochim Biophys Acta. 1990 Oct 18;1041(1):36–42. doi: 10.1016/0167-4838(90)90119-z. [DOI] [PubMed] [Google Scholar]
  12. Ganter C., Plückthun A. Glycine to alanine substitutions in helices of glyceraldehyde-3-phosphate dehydrogenase: effects on stability. Biochemistry. 1990 Oct 9;29(40):9395–9402. doi: 10.1021/bi00492a013. [DOI] [PubMed] [Google Scholar]
  13. Gerstein M., Lesk A. M., Chothia C. Structural mechanisms for domain movements in proteins. Biochemistry. 1994 Jun 7;33(22):6739–6749. doi: 10.1021/bi00188a001. [DOI] [PubMed] [Google Scholar]
  14. Hanson K. R., Ling R., Havir E. A computer program for fitting data to the Michaelis-Menten equation. Biochem Biophys Res Commun. 1967 Oct 26;29(2):194–197. doi: 10.1016/0006-291x(67)90586-4. [DOI] [PubMed] [Google Scholar]
  15. Li D., Stevens F. J., Schiffer M., Anderson L. E. Mechanism of light modulation: identification of potential redox-sensitive cysteines distal to catalytic site in light-activated chloroplast enzymes. Biophys J. 1994 Jul;67(1):29–35. doi: 10.1016/S0006-3495(94)80484-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Liaud M. F., Zhang D. X., Cerff R. Differential intron loss and endosymbiotic transfer of chloroplast glyceraldehyde-3-phosphate dehydrogenase genes to the nucleus. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8918–8922. doi: 10.1073/pnas.87.22.8918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Macioszek J., Anderson J. B., Anderson L. E. Isolation of chloroplastic phosphoglycerate kinase : kinetics of the two-enzyme phosphoglycerate kinase/glyceraldehyde-3-phosphate dehydrogenase couple. Plant Physiol. 1990 Sep;94(1):291–296. doi: 10.1104/pp.94.1.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McGowan R. E., Gibbs M. Comparative Enzymology of the Glyceraldehyde 3-Phosphate Dehydrogenases from Pisum sativum. Plant Physiol. 1974 Sep;54(3):312–319. doi: 10.1104/pp.54.3.312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Melandri B. A., Pupillo P., Baccarini-Melandri A. D-glyceraldehyde-3-phosphate dehydrogenase in photosynthetic cells. I. The reversible light-induced activation in vivo of NADP-dependent enzyme and its relationship to NAD-dependent activities. Biochim Biophys Acta. 1970 Nov 11;220(2):178–189. doi: 10.1016/0005-2744(70)90004-5. [DOI] [PubMed] [Google Scholar]
  20. O'Brien M. J., Powls R. Algal glyceraldehyde-3-phosphate dehydrogenase. Pyridine-nucleotide requirements of two enzymes purified from Scenedesmus obliquus. Eur J Biochem. 1976 Mar 16;63(1):155–161. doi: 10.1111/j.1432-1033.1976.tb10218.x. [DOI] [PubMed] [Google Scholar]
  21. Pupillo P., Faggiani R. Subunit structure of three glyceraldehyde 3-phosphate dehydrogenases of some flowering plants. Arch Biochem Biophys. 1979 May;194(2):581–592. doi: 10.1016/0003-9861(79)90653-2. [DOI] [PubMed] [Google Scholar]
  22. Pupillo P., Giuliani Piccari G. The reversible depolymerization of spinach chloroplast glyceraldehyde-phosphate dehydrogenase. Interaction with nucleotides and dithiothreitol. Eur J Biochem. 1975 Feb 21;51(2):475–482. doi: 10.1111/j.1432-1033.1975.tb03947.x. [DOI] [PubMed] [Google Scholar]
  23. Shih M. C., Heinrich P., Goodman H. M. Cloning and chromosomal mapping of nuclear genes encoding chloroplast and cytosolic glyceraldehyde-3-phosphate-dehydrogenase from Arabidopsis thaliana. Gene. 1991 Aug 15;104(2):133–138. doi: 10.1016/0378-1119(91)90242-4. [DOI] [PubMed] [Google Scholar]
  24. Shih M. C., Lazar G., Goodman H. M. Evidence in favor of the symbiotic origin of chloroplasts: primary structure and evolution of tobacco glyceraldehyde-3-phosphate dehydrogenases. Cell. 1986 Oct 10;47(1):73–80. doi: 10.1016/0092-8674(86)90367-3. [DOI] [PubMed] [Google Scholar]
  25. Skerra A. Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Gene. 1994 Dec 30;151(1-2):131–135. doi: 10.1016/0378-1119(94)90643-2. [DOI] [PubMed] [Google Scholar]
  26. Valverde F., Losada M., Serrano A. Functional complementation of an Escherichia coli gap mutant supports an amphibolic role for NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase of Synechocystis sp. strain PCC 6803. J Bacteriol. 1997 Jul;179(14):4513–4522. doi: 10.1128/jb.179.14.4513-4522.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yonuschot G. R., Ortwerth B. J., Koeppe O. J. Purification and properties of a nicotinamide adenine dinucleotide phosphate-requiring glyceraldehyde 3-phosphate dehydrogenase from spinach leaves. J Biol Chem. 1970 Aug 25;245(16):4193–4198. [PubMed] [Google Scholar]
  28. Zapponi M. C., Iadarola P., Stoppini M., Ferri G. Limited proteolysis of chloroplast glyceraldehyde-3-phosphate dehydrogenase (NADP) from Spinacia oleracea. Biol Chem Hoppe Seyler. 1993 Jun;374(6):395–402. doi: 10.1515/bchm3.1993.374.1-6.395. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES