Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Nov;115(3):1221–1230. doi: 10.1104/pp.115.3.1221

Pollen-Stigma Adhesion in Kale Is Not Dependent on the Self-(In)Compatibility Genotype.

D T Luu 1, P Heizmann 1, C Dumas 1
PMCID: PMC158587  PMID: 12223868

Abstract

The adhesion of pollen on the stigmas of flowering plants is a critical step for the success of reproduction in angiosperms, long considered to present some specificity in terms of self-incompatibility. We carried out quantitative measurements of the pollen-stigma adhesion (expressed in Newtons) in kale (Brassica oleracea), using the flotation force of Archimedes exerted by dense sucrose solutions (50%, w/v) to release pollen grains fixed on the surface of stigmas. We demonstrate that pollen adhesion varies with the genotypes of the plants used as partners, but increases with time in all cases for about 30 to 60 min after pollination. There is no correlation with the self- or cross-status of the pollinations, nor with the self-compatible or -incompatible genotypes of the parents. Only late events of pollination, after the germination or arrest of the pollen tube, depend on compatibility type. Biochemical and physiological dissection of pollen-stigma adhesion points to major components of this interaction: among male components, the pollen coating, eliminated by delipidation (or modified by mutation in the case of the cer mutants of the related species Arabidopsis thaliana), plays a major role in adhesion; the genetic background of the pollen parent is also of some importance. On the female side, the developmental stage of the stigma and the protein constituents of the stigmatic pellicle are critical for pollen capture. The SLG and SLR1 proteins are not involved in the initial stages of pollen adhesion on the stigma but one or both may be involved in the later stages.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Doughty J., Hedderson F., McCubbin A., Dickinson H. Interaction between a coating-borne peptide of the Brassica pollen grain and stigmatic S (self-incompatibility)-locus-specific glycoproteins. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):467–471. doi: 10.1073/pnas.90.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Elleman C. J., Dickinson H. G. Pollen-stigma interactions in Brassica. IV. Structural reorganization in the pollen grains during hydration. J Cell Sci. 1986 Feb;80:141–157. doi: 10.1242/jcs.80.1.141. [DOI] [PubMed] [Google Scholar]
  3. Gaude T., Dumas C. Organization of stigma surface components in Brassica: a cytochemical study. J Cell Sci. 1986 Jun;82:203–216. doi: 10.1242/jcs.82.1.203. [DOI] [PubMed] [Google Scholar]
  4. Gaude T., Friry A., Heizmann P., Mariac C., Rougier M., Fobis I., Dumas C. Expression of a self-incompatibility gene in a self-compatible line of Brassica oleracea. Plant Cell. 1993 Jan;5(1):75–86. doi: 10.1105/tpc.5.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hülskamp M., Kopczak S. D., Horejsi T. F., Kihl B. K., Pruitt R. E. Identification of genes required for pollen-stigma recognition in Arabidopsis thaliana. Plant J. 1995 Nov;8(5):703–714. doi: 10.1046/j.1365-313x.1995.08050703.x. [DOI] [PubMed] [Google Scholar]
  6. Ikeda S., Nasrallah J. B., Dixit R., Preiss S., Nasrallah M. E. An aquaporin-like gene required for the Brassica self-incompatibility response. Science. 1997 Jun 6;276(5318):1564–1566. doi: 10.1126/science.276.5318.1564. [DOI] [PubMed] [Google Scholar]
  7. Kandasamy M. K., Paolillo D. J., Faraday C. D., Nasrallah J. B., Nasrallah M. E. The S-locus specific glycoproteins of Brassica accumulate in the cell wall of developing stigma papillae. Dev Biol. 1989 Aug;134(2):462–472. doi: 10.1016/0012-1606(89)90119-x. [DOI] [PubMed] [Google Scholar]
  8. Knox R. B., Heslop-Harrison J., Reed C. Localization of antigens associated with the pollen grain wall by immunofluorescence. Nature. 1970 Mar 14;225(5237):1066–1068. doi: 10.1038/2251066a0. [DOI] [PubMed] [Google Scholar]
  9. Preuss D., Lemieux B., Yen G., Davis R. W. A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dev. 1993 Jun;7(6):974–985. doi: 10.1101/gad.7.6.974. [DOI] [PubMed] [Google Scholar]
  10. Ross J. H., Murphy D. J. Characterization of anther-expressed genes encoding a major class of extracellular oleosin-like proteins in the pollen coat of Brassicaceae. Plant J. 1996 May;9(5):625–637. doi: 10.1046/j.1365-313x.1996.9050625.x. [DOI] [PubMed] [Google Scholar]
  11. Stead A. D., Roberts I. N., Dickinson H. G. Pollen-stigma interaction in Brassica oleracea: the role of stigmatic proteins in pollen grain adhesion. J Cell Sci. 1980 Apr;42:417–423. doi: 10.1242/jcs.42.1.417. [DOI] [PubMed] [Google Scholar]
  12. Zuberi M. I., Dickinson H. G. Pollen-stigma interaction in Brassica. III. Hydration of the pollen grains. J Cell Sci. 1985 Jun;76:321–336. doi: 10.1242/jcs.76.1.321. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES