Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Nov;115(3):1241–1249. doi: 10.1104/pp.115.3.1241

Characterization of Blue Light Signal Transduction Chains That Control Development and Maintenance of Sexual Competence in Chlamydomonas reinhardtii.

J M Pan 1, M A Haring 1, C F Beck 1
PMCID: PMC158589  PMID: 12223870

Abstract

Blue light induces the differentiation of Chlamydomonas reinhardtii pregametes to gametes. The light-induced conversion of pregametes to gametes is protein synthesis dependent and proceeds only after a lag phase. Upon incubation in the dark, gametes lost their mating ability, resulting in dark-inactivated gametes. Reillumination rapidly restored mating competence and this was shown to be independent of protein synthesis. Apparently, differentiation and maintenance of gametic competence are both regulated by light. Whether one or two light-activated signal pathways are involved was investigated using pharmacological compounds that affect signal transduction. Compounds that affected pregamete-to-gamete conversion affected the expression of a gamete-specific gene in a similar fashion. Other drugs affected only dark-inactivated gametes, suggesting that reactivating gametes requires a separate signaling pathway. Combined treatments provided evidence for the consecutive action of a phosphatase and a protein kinase C-like kinase in the light-induced reactivation process.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adair W. S., Monk B. C., Cohen R., Hwang C., Goodenough U. W. Sexual agglutinins from the Chlamydomonas flagellar membrane. Partial purification and characterization. J Biol Chem. 1982 Apr 25;257(8):4593–4602. [PubMed] [Google Scholar]
  2. Ahmad M., Cashmore A. R. Seeing blue: the discovery of cryptochrome. Plant Mol Biol. 1996 Mar;30(5):851–861. doi: 10.1007/BF00020798. [DOI] [PubMed] [Google Scholar]
  3. Beck C. F., Acker A. Gametic Differentiation of Chlamydomonas reinhardtii: Control by Nitrogen and Light. Plant Physiol. 1992 Mar;98(3):822–826. doi: 10.1104/pp.98.3.822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bowler C., Chua N. H. Emerging themes of plant signal transduction. Plant Cell. 1994 Nov;6(11):1529–1541. doi: 10.1105/tpc.6.11.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buerkle S., Gloeckner G., Beck C. F. Chlamydomonas mutants affected in the light-dependent step of sexual differentiation. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):6981–6985. doi: 10.1073/pnas.90.15.6981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
  7. Gloeckner G., Beck C. F. Genes involved in light control of sexual differentiation in Chlamydomonas reinhardtii. Genetics. 1995 Nov;141(3):937–943. doi: 10.1093/genetics/141.3.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goodenough U. W. Cyclic AMP enhances the sexual agglutinability of Chlamydomonas flagella. J Cell Biol. 1989 Jul;109(1):247–252. doi: 10.1083/jcb.109.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hunnicutt G. R., Snell W. J. Rapid and slow mechanisms for loss of cell adhesiveness during fertilization in Chlamydomonas. Dev Biol. 1991 Sep;147(1):216–224. doi: 10.1016/s0012-1606(05)80019-3. [DOI] [PubMed] [Google Scholar]
  10. Ito M., Tanaka T., Inagaki M., Nakanishi K., Hidaka H. N-(6-phenylhexyl)-5-chloro-1-naphthalenesulfonamide, a novel activator of protein kinase C. Biochemistry. 1986 Jul 29;25(15):4179–4184. doi: 10.1021/bi00363a002. [DOI] [PubMed] [Google Scholar]
  11. Kaufman L. S. Transduction of Blue-Light Signals. Plant Physiol. 1993 Jun;102(2):333–337. doi: 10.1104/pp.102.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kinoshita T., Fukuzawa H., Shimada T., Saito T., Matsuda Y. Primary structure and expression of a gamete lytic enzyme in Chlamydomonas reinhardtii: similarity of functional domains to matrix metalloproteases. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4693–4697. doi: 10.1073/pnas.89.10.4693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kooijman R., de Wildt P., Homan W. L., Musgrave A., van den Ende H. Light Affects Flagellar Agglutinability in Chlamydomonas eugametos by Modification of the Agglutinin Molecules. Plant Physiol. 1988 Jan;86(1):216–223. doi: 10.1104/pp.86.1.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Liscum E., Briggs W. R. Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell. 1995 Apr;7(4):473–485. doi: 10.1105/tpc.7.4.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MacKintosh C., MacKintosh R. W. Inhibitors of protein kinases and phosphatases. Trends Biochem Sci. 1994 Nov;19(11):444–448. doi: 10.1016/0968-0004(94)90127-9. [DOI] [PubMed] [Google Scholar]
  16. Matsuda Y., Saito T., Yamaguchi T., Koseki M., Hayashi K. Topography of cell wall lytic enzyme in Chlamydomonas reinhardtii: form and location of the stored enzyme in vegetative cell and gamete. J Cell Biol. 1987 Feb;104(2):321–329. doi: 10.1083/jcb.104.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Matters G. L., Beale S. I. Blue-Light-Regulated Expression of Genes for Two Early Steps of Chlorophyll Biosynthesis in Chlamydomonas reinhardtii. Plant Physiol. 1995 Oct;109(2):471–479. doi: 10.1104/pp.109.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McNellis T. W., Deng X. W. Light control of seedling morphogenetic pattern. Plant Cell. 1995 Nov;7(11):1749–1761. doi: 10.1105/tpc.7.11.1749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pan J. M., Haring M. A., Beck C. F. Dissection of the Blue-Light-Dependent Signal-Transduction Pathway Involved in Gametic Differentiation of Chlamydomonas reinhardtii. Plant Physiol. 1996 Sep;112(1):303–309. doi: 10.1104/pp.112.1.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pasquale S. M., Goodenough U. W. Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii. J Cell Biol. 1987 Nov;105(5):2279–2292. doi: 10.1083/jcb.105.5.2279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Quail P. H. Photosensory perception and signal transduction in plants. Curr Opin Genet Dev. 1994 Oct;4(5):652–661. doi: 10.1016/0959-437x(94)90131-l. [DOI] [PubMed] [Google Scholar]
  22. Quarmby L. M. Signal transduction in the sexual life of Chlamydomonas. Plant Mol Biol. 1994 Dec;26(5):1271–1287. doi: 10.1007/BF00016474. [DOI] [PubMed] [Google Scholar]
  23. Sgaragli G. P., Valoti M., Gorelli B., Fusi F., Palmi M., Mantovani P. Calcium antagonist and antiperoxidant properties of some hindered phenols. Br J Pharmacol. 1993 Sep;110(1):369–377. doi: 10.1111/j.1476-5381.1993.tb13819.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sheen J. Protein phosphatase activity is required for light-inducible gene expression in maize. EMBO J. 1993 Sep;12(9):3497–3505. doi: 10.1002/j.1460-2075.1993.tb06024.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wegener D., Beck C. F. Identification of novel genes specifically expressed in Chlamydomonas reinhardtii zygotes. Plant Mol Biol. 1991 Jun;16(6):937–946. doi: 10.1007/BF00016066. [DOI] [PubMed] [Google Scholar]
  26. Weissig H., Beck C. F. Action Spectrum for the Light-Dependent Step in Gametic Differentiation of Chlamydomonas reinhardtii. Plant Physiol. 1991 Sep;97(1):118–121. doi: 10.1104/pp.97.1.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. von Gromoff E. D., Beck C. F. Genes expressed during sexual differentiation of Chlamydomonas reinhardtii. Mol Gen Genet. 1993 Nov;241(3-4):415–421. doi: 10.1007/BF00284695. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES