Abstract
The biosynthesis of L-ascorbic acid (vitamin C) is not well understood in plants. The ozone-sensitive Arabidopsis thaliana mutant vitamin c-1 (vtc1; formerly known as soz1) is deficient in ascorbic acid, accumulating approximately 30% of wild-type levels. This deficiency could result from elevated catabolism or decreased biosynthesis. No differences that could account for the deficiency were found in the activities of enzymes that catalyze the oxidation or reduction of ascorbic acid. The absolute rate of ascorbic acid turnover is actually less in vtc1 than in wild type; however, the turnover rate relative to the pool of ascorbic acid is not significantly different. The results from [U-14C]Glc labeling experiments suggest that the deficiency is the result of a biosynthetic defect: less L-[14C]ascorbic acid as a percentage of total soluble 14C accumulates in vtc1 than in wild type. The feeding of two putative biosynthetic intermediates, D-glucosone and L-sorbosone, had no positive effect on ascorbic acid levels in either genotype. The vtc1 defect does not appear to be the result of a deficiency in L-galactono-1,4-lactone dehydrogenase, an enzyme able to convert L-galactono-1,4-lactone to ascorbic acid.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baig M. M., Kelly S., Loewus F. L-ascorbic acid biosynthesis in higher plants from L-gulono-1, 4-lactone and L-galactono-1, 4-lactone. Plant Physiol. 1970 Aug;46(2):277–280. doi: 10.1104/pp.46.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartling D., Radzio R., Steiner U., Weiler E. W. A glutathione S-transferase with glutathione-peroxidase activity from Arabidopsis thaliana. Molecular cloning and functional characterization. Eur J Biochem. 1993 Sep 1;216(2):579–586. doi: 10.1111/j.1432-1033.1993.tb18177.x. [DOI] [PubMed] [Google Scholar]
- Chatterjee I. B. Ascorbic acid metabolism. World Rev Nutr Diet. 1978;30:69–87. doi: 10.1159/000401236. [DOI] [PubMed] [Google Scholar]
- Chatterjee I. B. Evolution and the biosynthesis of ascorbic acid. Science. 1973 Dec 21;182(4118):1271–1272. doi: 10.1126/science.182.4118.1271. [DOI] [PubMed] [Google Scholar]
- Conklin P. L., Last R. L. Differential accumulation of antioxidant mRNAs in Arabidopsis thaliana exposed to ozone. Plant Physiol. 1995 Sep;109(1):203–212. doi: 10.1104/pp.109.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conklin P. L., Williams E. H., Last R. L. Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9970–9974. doi: 10.1073/pnas.93.18.9970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frederiks W. M., Ankum M., Bosch K. S., Vreeling-Sindelárová H., Schellens J. P., Van Noorden C. J. A cytophotometric and electron-microscopical study on catalase activity in serial cryostat sections of rat liver. Histochem J. 1995 Sep;27(9):681–688. [PubMed] [Google Scholar]
- Grün M., Renstrøm B., Loewus F. A. Loss of Hydrogen from Carbon 5 of d-Glucose during Conversion of d-[5-H,6-C]Glucose to l-Ascorbic Acid in Pelargonium crispum (L.) L'Hér. Plant Physiol. 1982 Nov;70(5):1233–1235. doi: 10.1104/pp.70.5.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helsper J. P., Kagan L., Hilby C. L., Maynard T. M., Loewus F. A. l-Ascorbic Acid Biosynthesis in Ochromonas danica. Plant Physiol. 1982 Feb;69(2):465–468. doi: 10.1104/pp.69.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jablonski P. P., Anderson J. W. Light-dependent reduction of dehydroascorbate by ruptured pea chloroplasts. Plant Physiol. 1981 Jun;67(6):1239–1244. doi: 10.1104/pp.67.6.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawai T., Nishikimi M., Ozawa T., Yagi K. A missense mutation of L-gulono-gamma-lactone oxidase causes the inability of scurvy-prone osteogenic disorder rats to synthesize L-ascorbic acid. J Biol Chem. 1992 Oct 25;267(30):21973–21976. [PubMed] [Google Scholar]
- Kutnink M. A., Hawkes W. C., Schaus E. E., Omaye S. T. An internal standard method for the unattended high-performance liquid chromatographic analysis of ascorbic acid in blood components. Anal Biochem. 1987 Nov 1;166(2):424–430. doi: 10.1016/0003-2697(87)90594-x. [DOI] [PubMed] [Google Scholar]
- Mittler R., Zilinskas B. A. Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal Biochem. 1993 Aug 1;212(2):540–546. doi: 10.1006/abio.1993.1366. [DOI] [PubMed] [Google Scholar]
- Oba K., Ishikawa S., Nishikawa M., Mizuno H., Yamamoto T. Purification and properties of L-galactono-gamma-lactone dehydrogenase, a key enzyme for ascorbic acid biosynthesis, from sweet potato roots. J Biochem. 1995 Jan;117(1):120–124. doi: 10.1093/oxfordjournals.jbchem.a124697. [DOI] [PubMed] [Google Scholar]
- Okamura M. An improved method for determination of L-ascorbic acid and L-dehydroascorbic acid in blood plasma. Clin Chim Acta. 1980 May 9;103(3):259–268. doi: 10.1016/0009-8981(80)90144-8. [DOI] [PubMed] [Google Scholar]
- Padh H. Cellular functions of ascorbic acid. Biochem Cell Biol. 1990 Oct;68(10):1166–1173. doi: 10.1139/o90-173. [DOI] [PubMed] [Google Scholar]
- Saito K., Nick J. A., Loewus F. A. d-Glucosone and l-Sorbosone, Putative Intermediates of l-Ascorbic Acid Biosynthesis in Detached Bean and Spinach Leaves. Plant Physiol. 1990 Nov;94(3):1496–1500. doi: 10.1104/pp.94.3.1496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smirnoff N., Pallanca J. E. Ascorbate metabolism in relation to oxidative stress. Biochem Soc Trans. 1996 May;24(2):472–478. doi: 10.1042/bst0240472. [DOI] [PubMed] [Google Scholar]