Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Dec;115(4):1319–1328. doi: 10.1104/pp.115.4.1319

Cellular localization of Arabidopsis xyloglucan endotransglycosylase-related proteins during development and after wind stimulation.

D M Antosiewicz 1, M M Purugganan 1, D H Polisensky 1, J Braam 1
PMCID: PMC158597  PMID: 9414546

Abstract

A gene family encoding xyloglucan endotransglycosylase (XET)-related proteins exists in Arabidopsis. TCH4, a member of this family, is strongly up-regulated by environmental stimuli and encodes an XET capable of modifying cell wall xyloglucans. To investigate XET localization we generated antibodies against the TCH4 carboxyl terminus. The antibodies recognized TCH4 and possibly other XET-related proteins. These data indicate that XETs accumulate in expanding cell, at the sites of intercellular airspace formation, and at the bases of leaves, cotyledons, and hypocotyls. XETs also accumulated in vascular tissue, where cell wall modifications lead to the formation of tracheary elements and sieve tubes. Thus, XETs may function in modifying cell walls to allow growth, airspace formation, the development of vasculature, and reinforcement of regions under mechanical strain. Following wind stimulation, overall XET levels appeared to decrease in the leaves of wind-stimulated plants. However, consistent with an increase in TCH4 mRNA levels following wind, there were regions that showed increased immunoreaction, including sites around cells of the pith parenchyma, between the vascular elements, and within the epidermis. These results indicate that TCH4 may contribute to the adaptive changes in morphogenesis that occur in Arabidopsis following exposure to mechanical stimuli.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Braam J., Davis R. W. Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell. 1990 Feb 9;60(3):357–364. doi: 10.1016/0092-8674(90)90587-5. [DOI] [PubMed] [Google Scholar]
  2. Braam J. Regulated expression of the calmodulin-related TCH genes in cultured Arabidopsis cells: induction by calcium and heat shock. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3213–3216. doi: 10.1073/pnas.89.8.3213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Braam J., Sistrunk M. L., Polisensky D. H., Xu W., Purugganan M. M., Antosiewicz D. M., Campbell P., Johnson K. A. Life in a changing world: TCH gene regulation of expression and responses to environmental signals. Physiol Plant. 1996 Dec;98(4):909–916. [PubMed] [Google Scholar]
  4. Fanutti C., Gidley M. J., Reid J. S. Action of a pure xyloglucan endo-transglycosylase (formerly called xyloglucan-specific endo-(1-->4)-beta-D-glucanase) from the cotyledons of germinated nasturtium seeds. Plant J. 1993 May;3(5):691–700. doi: 10.1046/j.1365-313x.1993.03050691.x. [DOI] [PubMed] [Google Scholar]
  5. Farkas V., Sulova Z., Stratilova E., Hanna R., Maclachlan G. Cleavage of xyloglucan by nasturtium seed xyloglucanase and transglycosylation to xyloglucan subunit oligosaccharides. Arch Biochem Biophys. 1992 Nov 1;298(2):365–370. doi: 10.1016/0003-9861(92)90423-t. [DOI] [PubMed] [Google Scholar]
  6. Fry S. C., Smith R. C., Renwick K. F., Martin D. J., Hodge S. K., Matthews K. J. Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J. 1992 Mar 15;282(Pt 3):821–828. doi: 10.1042/bj2820821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hayashi T., Marsden M. P., Delmer D. P. Pea Xyloglucan and Cellulose: VI. Xyloglucan-Cellulose Interactions in Vitro and in Vivo. Plant Physiol. 1987 Feb;83(2):384–389. doi: 10.1104/pp.83.2.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hayashi T., Takeda T., Ogawa K., Mitsuishi Y. Effects of the degree of polymerization on the binding of xyloglucans to cellulose. Plant Cell Physiol. 1994 Sep;35(6):893–899. [PubMed] [Google Scholar]
  9. Hetherington P. R., Fry S. C. Xyloglucan Endotransglycosylase Activity in Carrot Cell Suspensions during cell Elongation and Somatic Embryogenesis. Plant Physiol. 1993 Nov;103(3):987–992. doi: 10.1104/pp.103.3.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jacobs M., Gilbert S. F. Basal localization of the presumptive auxin transport carrier in pea stem cells. Science. 1983 Jun 17;220(4603):1297–1300. doi: 10.1126/science.220.4603.1297. [DOI] [PubMed] [Google Scholar]
  11. Jaffe M. J., Forbes S. Thigmomorphogenesis: the effect of mechanical perturbation on plants. Plant Growth Regul. 1993 Feb;12(3):313–324. doi: 10.1007/BF00027213. [DOI] [PubMed] [Google Scholar]
  12. Knight M. R., Campbell A. K., Smith S. M., Trewavas A. J. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature. 1991 Aug 8;352(6335):524–526. doi: 10.1038/352524a0. [DOI] [PubMed] [Google Scholar]
  13. Knight M. R., Smith S. M., Trewavas A. J. Wind-induced plant motion immediately increases cytosolic calcium. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4967–4971. doi: 10.1073/pnas.89.11.4967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Medford J. I., Elmer J. S., Klee H. J. Molecular cloning and characterization of genes expressed in shoot apical meristems. Plant Cell. 1991 Apr;3(4):359–370. doi: 10.1105/tpc.3.4.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mitchell C. A., Myers P. N. Mechanical stress regulation of plant growth and development. Hortic Rev (Am Soc Hortic Sci) 1995;17:1–42. doi: 10.1002/9780470650585.ch1. [DOI] [PubMed] [Google Scholar]
  16. Nishitani K., Tominaga R. Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J Biol Chem. 1992 Oct 15;267(29):21058–21064. [PubMed] [Google Scholar]
  17. Okazawa K., Sato Y., Nakagawa T., Asada K., Kato I., Tomita E., Nishitani K. Molecular cloning and cDNA sequencing of endoxyloglucan transferase, a novel class of glycosyltransferase that mediates molecular grafting between matrix polysaccharides in plant cell walls. J Biol Chem. 1993 Dec 5;268(34):25364–25368. [PubMed] [Google Scholar]
  18. Purugganan M. M., Braam J., Fry S. C. The Arabidopsis TCH4 xyloglucan endotransglycosylase. Substrate specificity, pH optimum, and cold tolerance. Plant Physiol. 1997 Sep;115(1):181–190. doi: 10.1104/pp.115.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Redgwell R. J., Fry S. C. Xyloglucan Endotransglycosylase Activity Increases during Kiwifruit (Actinidia deliciosa) Ripening (Implications for Fruit Softening). Plant Physiol. 1993 Dec;103(4):1399–1406. doi: 10.1104/pp.103.4.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Redgwell R. J., Melton L. D., Brasch D. J. Cell Wall Dissolution in Ripening Kiwifruit (Actinidia deliciosa) : Solubilization of the Pectic Polymers. Plant Physiol. 1992 Jan;98(1):71–81. doi: 10.1104/pp.98.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Saab I. N., Sachs M. M. A flooding-induced xyloglucan endo-transglycosylase homolog in maize is responsive to ethylene and associated with aerenchyma. Plant Physiol. 1996 Sep;112(1):385–391. doi: 10.1104/pp.112.1.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sistrunk M. L., Antosiewicz D. M., Purugganan M. M., Braam J. Arabidopsis TCH3 encodes a novel Ca2+ binding protein and shows environmentally induced and tissue-specific regulation. Plant Cell. 1994 Nov;6(11):1553–1565. doi: 10.1105/tpc.6.11.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smith R. C., Fry S. C. Endotransglycosylation of xyloglucans in plant cell suspension cultures. Biochem J. 1991 Oct 15;279(Pt 2):529–535. doi: 10.1042/bj2790529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Telewski F. W., Jaffe M. J. Thigmomorphogenesis: field and laboratory studies of Abies fraseri in response to wind or mechanical perturbation. Physiol Plant. 1986;66:211–218. doi: 10.1111/j.1399-3054.1986.tb02411.x. [DOI] [PubMed] [Google Scholar]
  25. Xu W., Campbell P., Vargheese A. K., Braam J. The Arabidopsis XET-related gene family: environmental and hormonal regulation of expression. Plant J. 1996 Jun;9(6):879–889. doi: 10.1046/j.1365-313x.1996.9060879.x. [DOI] [PubMed] [Google Scholar]
  26. Xu W., Purugganan M. M., Polisensky D. H., Antosiewicz D. M., Fry S. C., Braam J. Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell. 1995 Oct;7(10):1555–1567. doi: 10.1105/tpc.7.10.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zurek D. M., Clouse S. D. Molecular cloning and characterization of a brassinosteroid-regulated gene from elongating soybean (Glycine max L.) epicotyls. Plant Physiol. 1994 Jan;104(1):161–170. doi: 10.1104/pp.104.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES