Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Dec;115(4):1351–1358. doi: 10.1104/pp.115.4.1351

Evidence that heat and ultraviolet radiation activate a common stress-response program in plants that is altered in the uvh6 mutant of Arabidopsis thaliana.

M E Jenkins 1, T C Suzuki 1, D W Mount 1
PMCID: PMC158600  PMID: 9414549

Abstract

The uvh6 mutant of Arabidopsis was previously isolated in a screen for increased sensitivity to ultraviolet (UV) radiation. uvh6 mutant plants were killed by incubation at 37 degrees C for 4 d, a treatment not lethal to wild-type plants. Furthermore, under permissive conditions, uvh6 plants were yellow-green with an approximately one-third lower chlorophyll content. Genetic analysis of the uvh6 mutant strongly suggested that all three mutant phenotypes were due to mutation at the same genetic locus. To understand UVH6 function more fully, the response of wild-type plants to growth at elevated temperatures and exposure to UV radiation was analyzed. Wild-type plants grown at 30 degrees C were as UV-hypersensitive and yellow-green as uvh6 mutant plants grown at 24 degrees C. Mutant uvh6 plants induced heat-shock protein HSP21 at a lower threshold temperature than wild-type plants, indicating that the uvh6 mutant was exhibiting signs of heat stress at a 4 to 5 degrees C lower temperature than wild-type plants. We propose the UV damage and heat induce a common stress response in plants that leads to tissue death and reduced chloroplast function, and that the UVH6 product is a negative regulator of this response.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bleecker A. B., Patterson S. E. Last exit: senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell. 1997 Jul;9(7):1169–1179. doi: 10.1105/tpc.9.7.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boston R. S., Viitanen P. V., Vierling E. Molecular chaperones and protein folding in plants. Plant Mol Biol. 1996 Oct;32(1-2):191–222. doi: 10.1007/BF00039383. [DOI] [PubMed] [Google Scholar]
  4. Britt A. B., Chen J. J., Wykoff D., Mitchell D. A UV-sensitive mutant of Arabidopsis defective in the repair of pyrimidine-pyrimidinone(6-4) dimers. Science. 1993 Sep 17;261(5128):1571–1574. doi: 10.1126/science.8372351. [DOI] [PubMed] [Google Scholar]
  5. Britt A. B. Repair of DNA damage induced by ultraviolet radiation. Plant Physiol. 1995 Jul;108(3):891–896. doi: 10.1104/pp.108.3.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Callard D., Axelos M., Mazzolini L. Novel molecular markers for late phases of the growth cycle of Arabidopsis thaliana cell-suspension cultures are expressed during organ senescence. Plant Physiol. 1996 Oct;112(2):705–715. doi: 10.1104/pp.112.2.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cerutti H., Osman M., Grandoni P., Jagendorf A. T. A homolog of Escherichia coli RecA protein in plastids of higher plants. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8068–8072. doi: 10.1073/pnas.89.17.8068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen J. J., Mitchell D. L., Britt A. B. A Light-Dependent Pathway for the Elimination of UV-Induced Pyrimidine (6-4) Pyrimidinone Photoproducts in Arabidopsis. Plant Cell. 1994 Sep;6(9):1311–1317. doi: 10.1105/tpc.6.9.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen Q., Lauzon L. M., DeRocher A. E., Vierling E. Accumulation, stability, and localization of a major chloroplast heat-shock protein. J Cell Biol. 1990 Jun;110(6):1873–1883. doi: 10.1083/jcb.110.6.1873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chory J., Peto C., Feinbaum R., Pratt L., Ausubel F. Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell. 1989 Sep 8;58(5):991–999. doi: 10.1016/0092-8674(89)90950-1. [DOI] [PubMed] [Google Scholar]
  11. Conconi A., Smerdon M. J., Howe G. A., Ryan C. A. The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation. Nature. 1996 Oct 31;383(6603):826–829. doi: 10.1038/383826a0. [DOI] [PubMed] [Google Scholar]
  12. Dietrich R. A., Delaney T. P., Uknes S. J., Ward E. R., Ryals J. A., Dangl J. L. Arabidopsis mutants simulating disease resistance response. Cell. 1994 May 20;77(4):565–577. doi: 10.1016/0092-8674(94)90218-6. [DOI] [PubMed] [Google Scholar]
  13. Green R., Fluhr R. UV-B-Induced PR-1 Accumulation Is Mediated by Active Oxygen Species. Plant Cell. 1995 Feb;7(2):203–212. doi: 10.1105/tpc.7.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Greenberg J. T., Ausubel F. M. Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant J. 1993 Aug;4(2):327–341. doi: 10.1046/j.1365-313x.1993.04020327.x. [DOI] [PubMed] [Google Scholar]
  15. Harlow G. R., Jenkins M. E., Pittalwala T. S., Mount D. W. Isolation of uvh1, an Arabidopsis mutant hypersensitive to ultraviolet light and ionizing radiation. Plant Cell. 1994 Feb;6(2):227–235. doi: 10.1105/tpc.6.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hugly S., Somerville C. A role for membrane lipid polyunsaturation in chloroplast biogenesis at low temperature. Plant Physiol. 1992 May;99(1):197–202. doi: 10.1104/pp.99.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jenkins M. E., Harlow G. R., Liu Z., Shotwell M. A., Ma J., Mount D. W. Radiation-sensitive mutants of Arabidopsis thaliana. Genetics. 1995 Jun;140(2):725–732. doi: 10.1093/genetics/140.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kieber J. J., Rothenberg M., Roman G., Feldmann K. A., Ecker J. R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993 Feb 12;72(3):427–441. doi: 10.1016/0092-8674(93)90119-b. [DOI] [PubMed] [Google Scholar]
  19. Levine A., Pennell R. I., Alvarez M. E., Palmer R., Lamb C. Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol. 1996 Apr 1;6(4):427–437. doi: 10.1016/s0960-9822(02)00510-9. [DOI] [PubMed] [Google Scholar]
  20. Li J., Ou-Lee T. M., Raba R., Amundson R. G., Last R. L. Arabidopsis Flavonoid Mutants Are Hypersensitive to UV-B Irradiation. Plant Cell. 1993 Feb;5(2):171–179. doi: 10.1105/tpc.5.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mount D. W. DNA repair. Reprogramming transcription. Nature. 1996 Oct 31;383(6603):763–764. doi: 10.1038/383763a0. [DOI] [PubMed] [Google Scholar]
  22. Oppenheimer D. G., Herman P. L., Sivakumaran S., Esch J., Marks M. D. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell. 1991 Nov 1;67(3):483–493. doi: 10.1016/0092-8674(91)90523-2. [DOI] [PubMed] [Google Scholar]
  23. Osteryoung K. W., Vierling E. Dynamics of small heat shock protein distribution within the chloroplasts of higher plants. J Biol Chem. 1994 Nov 18;269(46):28676–28682. [PubMed] [Google Scholar]
  24. Ward J. F. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol. 1988;35:95–125. doi: 10.1016/s0079-6603(08)60611-x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES