Abstract
The biotin carboxylase subunit of the heteromeric chloroplastic acetyl-coenzyme A carboxylase (ACCase) of Arabidopsis thaliana is coded by a single gene (CAC2), which is interrupted by 15 introns. The cDNA encodes a deduced protein of 537 amino acids with an apparent N-terminal chloroplast-targeting transit peptide. Antibodies generated to a glutathione S-transferase-CAC2 fusion protein react solely with a 51-kD polypeptide of Arabidopsis; these antibodies also inhibit ACCase activity in extracts of Arabidopsis. The entire CAC2 cDNA sequence was expressed in Escherichia coli and the resulting recombinant biotin carboxylase was enzymatically active in carboxylating free biotin. The catalytic properties of the recombinant biotin carboxylase indicate that the activity of the heteromeric ACCase may be regulated by light-/dark-induced changes in stromal pH. The CAC2 gene is maximally expressed in organs and tissues that are actively synthesizing fatty acids for membrane lipids or oil deposition. The observed expression pattern of CAC2 mirrors that previously reported for the CAC1 gene (J.-K. Choi, F. Yu, E.S. Wurtele, B.J. Nikolau [1995] Plant Physiol 109: 619-625; J. Ke, J.-K. Choi, M. Smith, H.T. Horner, B.J. Nikolau, E.S. Wurtele [1997] Plant Physiol 113: 357-365), which codes for the biotin carboxyl carrier subunit of the heteromeric ACCase. This coordination is probably partially established by coordinate transcription of the two genes. This hypothesis is consistent with the finding that the CAC2 and CAC1 gene promoters share a common set of sequence motifs that may be important in guiding the transcription of these genes.
Full Text
The Full Text of this article is available as a PDF (2.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Al-Feel W., Chirala S. S., Wakil S. J. Cloning of the yeast FAS3 gene and primary structure of yeast acetyl-CoA carboxylase. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4534–4538. doi: 10.1073/pnas.89.10.4534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alban C., Baldet P., Douce R. Localization and characterization of two structurally different forms of acetyl-CoA carboxylase in young pea leaves, of which one is sensitive to aryloxyphenoxypropionate herbicides. Biochem J. 1994 Jun 1;300(Pt 2):557–565. doi: 10.1042/bj3000557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alban C., Jullien J., Job D., Douce R. Isolation and Characterization of Biotin Carboxylase from Pea Chloroplasts. Plant Physiol. 1995 Nov;109(3):927–935. doi: 10.1104/pp.109.3.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Best E. A., Knauf V. C. Organization and nucleotide sequences of the genes encoding the biotin carboxyl carrier protein and biotin carboxylase protein of Pseudomonas aeruginosa acetyl coenzyme A carboxylase. J Bacteriol. 1993 Nov;175(21):6881–6889. doi: 10.1128/jb.175.21.6881-6889.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
- Choi J. K., Yu F., Wurtele E. S., Nikolau B. J. Molecular cloning and characterization of the cDNA coding for the biotin-containing subunit of the chloroplastic acetyl-coenzyme A carboxylase. Plant Physiol. 1995 Oct;109(2):619–625. doi: 10.1104/pp.109.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diez T. A., Wurtele E. S., Nikolau B. J. Purification and characterization of 3-methylcrotonyl-coenzyme-A carboxylase from leaves of Zea mays. Arch Biochem Biophys. 1994 Apr;310(1):64–75. doi: 10.1006/abbi.1994.1141. [DOI] [PubMed] [Google Scholar]
- Donadio S., Staver M. J., Katz L. Erythromycin production in Saccharopolyspora erythraea does not require a functional propionyl-CoA carboxylase. Mol Microbiol. 1996 Mar;19(5):977–984. doi: 10.1046/j.1365-2958.1996.439969.x. [DOI] [PubMed] [Google Scholar]
- Eastwell K. C., Stumpf P. K. Regulation of Plant Acetyl-CoA Carboxylase by Adenylate Nucleotides. Plant Physiol. 1983 May;72(1):50–55. doi: 10.1104/pp.72.1.50. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egli M. A., Gengenbach B. G., Gronwald J. W., Somers D. A., Wyse D. L. Characterization of Maize Acetyl-Coenzyme A Carboxylase. Plant Physiol. 1993 Feb;101(2):499–506. doi: 10.1104/pp.101.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
- Genbauffe F. S., Cooper T. G. The urea amidolyase (DUR1,2) gene of Saccharomyces cerevisiae. DNA Seq. 1991;2(1):19–32. doi: 10.3109/10425179109008435. [DOI] [PubMed] [Google Scholar]
- Ghislain M., Frankard V., Vandenbossche D., Matthews B. F., Jacobs M. Molecular analysis of the aspartate kinase-homoserine dehydrogenase gene from Arabidopsis thaliana. Plant Mol Biol. 1994 Mar;24(6):835–851. doi: 10.1007/BF00014439. [DOI] [PubMed] [Google Scholar]
- Gornicki P., Podkowinski J., Scappino L. A., DiMaio J., Ward E., Haselkorn R. Wheat acetyl-coenzyme A carboxylase: cDNA and protein structure. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6860–6864. doi: 10.1073/pnas.91.15.6860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gornicki P., Scappino L. A., Haselkorn R. Genes for two subunits of acetyl coenzyme A carboxylase of Anabaena sp. strain PCC 7120: biotin carboxylase and biotin carboxyl carrier protein. J Bacteriol. 1993 Aug;175(16):5268–5272. doi: 10.1128/jb.175.16.5268-5272.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guchhait R. B., Polakis S. E., Dimroth P., Stoll E., Moss J., Lane M. D. Acetyl coenzyme A carboxylase system of Escherichia coli. Purification and properties of the biotin carboxylase, carboxyltransferase, and carboxyl carrier protein components. J Biol Chem. 1974 Oct 25;249(20):6633–6645. [PubMed] [Google Scholar]
- Guiltinan M. J., Marcotte W. R., Jr, Quatrano R. S. A plant leucine zipper protein that recognizes an abscisic acid response element. Science. 1990 Oct 12;250(4978):267–271. doi: 10.1126/science.2145628. [DOI] [PubMed] [Google Scholar]
- Hasslacher M., Ivessa A. S., Paltauf F., Kohlwein S. D. Acetyl-CoA carboxylase from yeast is an essential enzyme and is regulated by factors that control phospholipid metabolism. J Biol Chem. 1993 May 25;268(15):10946–10952. [PubMed] [Google Scholar]
- Jäger W., Peters-Wendisch P. G., Kalinowski J., Pühler A. A Corynebacterium glutamicum gene encoding a two-domain protein similar to biotin carboxylases and biotin-carboxyl-carrier proteins. Arch Microbiol. 1996 Aug;166(2):76–82. doi: 10.1007/s002030050359. [DOI] [PubMed] [Google Scholar]
- Kannangara C. G., Stumpf P. K. Fat metabolism in higher plants. LIV. A procaryotic type acetyl CoA carboxylase in spinach chloroplasts. Arch Biochem Biophys. 1972 Sep;152(1):83–91. doi: 10.1016/0003-9861(72)90196-8. [DOI] [PubMed] [Google Scholar]
- Kawagoe Y., Murai N. Four distinct nuclear proteins recognize in vitro the proximal promoter of the bean seed storage protein beta-phaseolin gene conferring spatial and temporal control. Plant J. 1992 Nov;2(6):927–936. doi: 10.1046/j.1365-313x.1992.t01-6-00999.x. [DOI] [PubMed] [Google Scholar]
- Ke J., Choi J. K., Smith M., Horner H. T., Nikolau B. J., Wurtele E. S. Structure of the CAC1 gene and in situ characterization of its expression. The Arabidopsis thaliana gene coding for the biotin-containing subunit of the plastidic acetyl-coenzyme A carboxylase. Plant Physiol. 1997 Feb;113(2):357–365. doi: 10.1104/pp.113.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kieber J. J., Rothenberg M., Roman G., Feldmann K. A., Ecker J. R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993 Feb 12;72(3):427–441. doi: 10.1016/0092-8674(93)90119-b. [DOI] [PubMed] [Google Scholar]
- Kondo H., Shiratsuchi K., Yoshimoto T., Masuda T., Kitazono A., Tsuru D., Anai M., Sekiguchi M., Tanabe T. Acetyl-CoA carboxylase from Escherichia coli: gene organization and nucleotide sequence of the biotin carboxylase subunit. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9730–9733. doi: 10.1073/pnas.88.21.9730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konishi T., Sasaki Y. Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance toward herbicides. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3598–3601. doi: 10.1073/pnas.91.9.3598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konishi T., Shinohara K., Yamada K., Sasaki Y. Acetyl-CoA carboxylase in higher plants: most plants other than gramineae have both the prokaryotic and the eukaryotic forms of this enzyme. Plant Cell Physiol. 1996 Mar;37(2):117–122. doi: 10.1093/oxfordjournals.pcp.a028920. [DOI] [PubMed] [Google Scholar]
- Lanahan M. B., Ho T. H., Rogers S. W., Rogers J. C. A gibberellin response complex in cereal alpha-amylase gene promoters. Plant Cell. 1992 Feb;4(2):203–211. doi: 10.1105/tpc.4.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li S. J., Cronan J. E., Jr Growth rate regulation of Escherichia coli acetyl coenzyme A carboxylase, which catalyzes the first committed step of lipid biosynthesis. J Bacteriol. 1993 Jan;175(2):332–340. doi: 10.1128/jb.175.2.332-340.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li S. J., Cronan J. E., Jr The gene encoding the biotin carboxylase subunit of Escherichia coli acetyl-CoA carboxylase. J Biol Chem. 1992 Jan 15;267(2):855–863. [PubMed] [Google Scholar]
- López-Casillas F., Bai D. H., Luo X. C., Kong I. S., Hermodson M. A., Kim K. H. Structure of the coding sequence and primary amino acid sequence of acetyl-coenzyme A carboxylase. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5784–5788. doi: 10.1073/pnas.85.16.5784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newman T., de Bruijn F. J., Green P., Keegstra K., Kende H., McIntosh L., Ohlrogge J., Raikhel N., Somerville S., Thomashow M. Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol. 1994 Dec;106(4):1241–1255. doi: 10.1104/pp.106.4.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nikolau B. J., Hawke J. C., Slack C. R. Acetyl-coenzyme A carboxylase in maize leaves. Arch Biochem Biophys. 1981 Oct 15;211(2):605–612. doi: 10.1016/0003-9861(81)90495-1. [DOI] [PubMed] [Google Scholar]
- Nikolau B. J., Wurtele E. S., Stumpf P. K. Use of streptavidin to detect biotin-containing proteins in plants. Anal Biochem. 1985 Sep;149(2):448–453. doi: 10.1016/0003-2697(85)90596-2. [DOI] [PubMed] [Google Scholar]
- Norman E., De Smet K. A., Stoker N. G., Ratledge C., Wheeler P. R., Dale J. W. Lipid synthesis in mycobacteria: characterization of the biotin carboxyl carrier protein genes from Mycobacterium leprae and M. tuberculosis. J Bacteriol. 1994 May;176(9):2525–2531. doi: 10.1128/jb.176.9.2525-2531.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohlrogge J. B., Kuhn D. N., Stumpf P. K. Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1194–1198. doi: 10.1073/pnas.76.3.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Post-Beittenmiller D., Roughan G., Ohlrogge J. B. Regulation of plant Fatty Acid biosynthesis : analysis of acyl-coenzyme a and acyl-acyl carrier protein substrate pools in spinach and pea chloroplasts. Plant Physiol. 1992 Oct;100(2):923–930. doi: 10.1104/pp.100.2.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roesler K. R., Shorrosh B. S., Ohlrogge J. B. Structure and expression of an Arabidopsis acetyl-coenzyme A carboxylase gene. Plant Physiol. 1994 Jun;105(2):611–617. doi: 10.1104/pp.105.2.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roessler P. G., Ohlrogge J. B. Cloning and characterization of the gene that encodes acetyl-coenzyme A carboxylase in the alga Cyclotella cryptica. J Biol Chem. 1993 Sep 15;268(26):19254–19259. [PubMed] [Google Scholar]
- Rogers J. C., Rogers S. W. Definition and functional implications of gibberellin and abscisic acid cis-acting hormone response complexes. Plant Cell. 1992 Nov;4(11):1443–1451. doi: 10.1105/tpc.4.11.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salinas J., Oeda K., Chua N. H. Two G-box-related sequences confer different expression patterns in transgenic tobacco. Plant Cell. 1992 Dec;4(12):1485–1493. doi: 10.1105/tpc.4.12.1485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasaki Y., Konishi T., Nagano Y. The Compartmentation of Acetyl-Coenzyme A Carboxylase in Plants. Plant Physiol. 1995 Jun;108(2):445–449. doi: 10.1104/pp.108.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulte W., Schell J., Töpfer R. A gene encoding acetyl-coenzyme A carboxylase from Brassica napus. Plant Physiol. 1994 Oct;106(2):793–794. doi: 10.1104/pp.106.2.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shorrosh B. S., Dixon R. A., Ohlrogge J. B. Molecular cloning, characterization, and elicitation of acetyl-CoA carboxylase from alfalfa. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4323–4327. doi: 10.1073/pnas.91.10.4323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shorrosh B. S., Roesler K. R., Shintani D., van de Loo F. J., Ohlrogge J. B. Structural analysis, plastid localization, and expression of the biotin carboxylase subunit of acetyl-coenzyme A carboxylase from tobacco. Plant Physiol. 1995 Jun;108(2):805–812. doi: 10.1104/pp.108.2.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shorrosh B. S., Savage L. J., Soll J., Ohlrogge J. B. The pea chloroplast membrane-associated protein, IEP96, is a subunit of acetyl-CoA carboxylase. Plant J. 1996 Aug;10(2):261–268. doi: 10.1046/j.1365-313x.1996.10020261.x. [DOI] [PubMed] [Google Scholar]
- Smith D. B., Johnson K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
- Toh H., Kondo H., Tanabe T. Molecular evolution of biotin-dependent carboxylases. Eur J Biochem. 1993 Aug 1;215(3):687–696. doi: 10.1111/j.1432-1033.1993.tb18080.x. [DOI] [PubMed] [Google Scholar]
- Voytas D. F., Konieczny A., Cummings M. P., Ausubel F. M. The structure, distribution and evolution of the Ta1 retrotransposable element family of Arabidopsis thaliana. Genetics. 1990 Nov;126(3):713–721. doi: 10.1093/genetics/126.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wakil S. J., Stoops J. K., Joshi V. C. Fatty acid synthesis and its regulation. Annu Rev Biochem. 1983;52:537–579. doi: 10.1146/annurev.bi.52.070183.002541. [DOI] [PubMed] [Google Scholar]
- Wexler I. D., Du Y., Lisgaris M. V., Mandal S. K., Freytag S. O., Yang B. S., Liu T. C., Kwon M., Patel M. S., Kerr D. S. Primary amino acid sequence and structure of human pyruvate carboxylase. Biochim Biophys Acta. 1994 Oct 21;1227(1-2):46–52. doi: 10.1016/0925-4439(94)90105-8. [DOI] [PubMed] [Google Scholar]
- Wurtele E. S., Nikolau B. J. Plants contain multiple biotin enzymes: discovery of 3-methylcrotonyl-CoA carboxylase, propionyl-CoA carboxylase and pyruvate carboxylase in the plant kingdom. Arch Biochem Biophys. 1990 Apr;278(1):179–186. doi: 10.1016/0003-9861(90)90246-u. [DOI] [PubMed] [Google Scholar]
- Yanai Y., Kawasaki T., Shimada H., Wurtele E. S., Nikolau B. J., Ichikawa N. Genomic organization of 251 kDa acetyl-CoA carboxylase genes in Arabidopsis: tandem gene duplication has made two differentially expressed isozymes. Plant Cell Physiol. 1995 Jul;36(5):779–787. doi: 10.1093/oxfordjournals.pcp.a078822. [DOI] [PubMed] [Google Scholar]