Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Dec;115(4):1397–1403. doi: 10.1104/pp.115.4.1397

Subcellular localization of celery mannitol dehydrogenase. A cytosolic metabolic enzyme in nuclei.

Y T Yamamoto 1, E Zamski 1, J D Williamson 1, M A Conkling 1, D M Pharr 1
PMCID: PMC158604  PMID: 9414553

Abstract

Mannitol dehydrogenase (MTD) is the first enzyme in mannitol catabolism in celery (Apium graveolens L. var dulce [Mill] Pers. cv Florida 638). Mannitol is an important photoassimilate, as well as providing plants with resistance to salt and osmotic stress. Previous work has shown that expression of the celery Mtd gene is regulated by many factors, such as hexose sugars, salt and osmotic stress, and salicylic acid. Furthermore, MTD is present in cells of sink organs, phloem cells, and mannitol-grown suspension cultures. Immunogold localization and biochemical analyses presented here demonstrate that celery MTD is localized in the cytosol and nuclei. Although the cellular density of MTD varies among different cell types, densities of nuclear and cytosolic MTD in a given cell are approximately equal. Biochemical analyses of nuclear extracts from mannitol-grown cultured cells confirmed that the nuclear-localized MTD is enzymatically active. The function(s) of nuclear-localized MTD is unknown.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carrington J. C. Targeting of proteins to the nucleus. Methods Cell Biol. 1995;50:283–294. doi: 10.1016/s0091-679x(08)61037-7. [DOI] [PubMed] [Google Scholar]
  2. Everard J. D., Franceschi V. R., Loescher W. H. Mannose-6-Phosphate Reductase, a Key Enzyme in Photoassimilate Partitioning, Is Abundant and Located in the Cytosol of Photosynthetically Active Cells of Celery (Apium graveolens L.) Source Leaves. Plant Physiol. 1993 Jun;102(2):345–356. doi: 10.1104/pp.102.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gancedo J. M. Carbon catabolite repression in yeast. Eur J Biochem. 1992 Jun 1;206(2):297–313. doi: 10.1111/j.1432-1033.1992.tb16928.x. [DOI] [PubMed] [Google Scholar]
  4. Green P. J., Kay S. A., Chua N. H. Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene. EMBO J. 1987 Sep;6(9):2543–2549. doi: 10.1002/j.1460-2075.1987.tb02542.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grupe A., Hultgren B., Ryan A., Ma Y. H., Bauer M., Stewart T. A. Transgenic knockouts reveal a critical requirement for pancreatic beta cell glucokinase in maintaining glucose homeostasis. Cell. 1995 Oct 6;83(1):69–78. doi: 10.1016/0092-8674(95)90235-x. [DOI] [PubMed] [Google Scholar]
  6. Jang J. C., León P., Zhou L., Sheen J. Hexokinase as a sugar sensor in higher plants. Plant Cell. 1997 Jan;9(1):5–19. doi: 10.1105/tpc.9.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kiedrowski S., Kawalleck P., Hahlbrock K., Somssich I. E., Dangl J. L. Rapid activation of a novel plant defense gene is strictly dependent on the Arabidopsis RPM1 disease resistance locus. EMBO J. 1992 Dec;11(13):4677–4684. doi: 10.1002/j.1460-2075.1992.tb05572.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kumble K. D., Vishwanatha J. K. Immunoelectron microscopic analysis of the intracellular distribution of primer recognition proteins, annexin 2 and phosphoglycerate kinase, in normal and transformed cells. J Cell Sci. 1991 Aug;99(Pt 4):751–758. doi: 10.1242/jcs.99.4.751. [DOI] [PubMed] [Google Scholar]
  9. Lauter F. R. Root-specific expression of the LeRse-1 gene in tomato is induced by exposure of the shoot to light. Mol Gen Genet. 1996 Oct 28;252(6):751–754. doi: 10.1007/BF02173983. [DOI] [PubMed] [Google Scholar]
  10. Pedersen T. J., Arwood L. J., Spiker S., Guiltinan M. J., Thompson W. F. High mobility group chromosomal proteins bind to AT-rich tracts flanking plant genes. Plant Mol Biol. 1991 Jan;16(1):95–104. doi: 10.1007/BF00017920. [DOI] [PubMed] [Google Scholar]
  11. Prata RTN., Williamson J. D., Conkling M. A., Pharr D. M. Sugar Repression of Mannitol Dehydrogenase Activity in Celery Cells. Plant Physiol. 1997 May;114(1):307–314. doi: 10.1104/pp.114.1.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Saravitz D. M., Siedow J. N. The Lipoxygenase Isozymes in Soybean [Glycine max (L.) Merr.] Leaves (Changes during Leaf Development, after Wounding, and following Reproductive Sink Removal). Plant Physiol. 1995 Feb;107(2):535–543. doi: 10.1104/pp.107.2.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Silver P. A. How proteins enter the nucleus. Cell. 1991 Feb 8;64(3):489–497. doi: 10.1016/0092-8674(91)90233-o. [DOI] [PubMed] [Google Scholar]
  14. Spiker S. High-mobility group chromosomal proteins of wheat. J Biol Chem. 1984 Oct 10;259(19):12007–12013. [PubMed] [Google Scholar]
  15. Stoop J. M., Williamson J. D., Conkling M. A., Pharr D. M. Purification of NAD-dependent mannitol dehydrogenase from celery suspension cultures. Plant Physiol. 1995 Jul;108(3):1219–1225. doi: 10.1104/pp.108.3.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stoop JMH., Pharr D. M. Effect of Different Carbon Sources on Relative Growth Rate, Internal Carbohydrates, and Mannitol 1-Oxidoreductase Activity in Celery Suspension Cultures. Plant Physiol. 1993 Nov;103(3):1001–1008. doi: 10.1104/pp.103.3.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stoop JMH., Pharr D. M. Mannitol Metabolism in Celery Stressed by Excess Macronutrients. Plant Physiol. 1994 Oct;106(2):503–511. doi: 10.1104/pp.106.2.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Toyoda Y., Miwa I., Kamiya M., Ogiso S., Nonogaki T., Aoki S., Okuda J. Evidence for glucokinase translocation by glucose in rat hepatocytes. Biochem Biophys Res Commun. 1994 Oct 14;204(1):252–256. doi: 10.1006/bbrc.1994.2452. [DOI] [PubMed] [Google Scholar]
  19. Wang J. L., Walling L. L., Jauh G. Y., Gu Y. Q., Lord E. M. Lily cofactor-independent phosphoglycerate mutase: purification, partial sequencing, and immunolocalization. Planta. 1996;200(3):343–352. doi: 10.1007/BF00200302. [DOI] [PubMed] [Google Scholar]
  20. Williamson J. D., Stoop J. M., Massel M. O., Conkling M. A., Pharr D. M. Sequence analysis of a mannitol dehydrogenase cDNA from plants reveals a function for the pathogenesis-related protein ELI3. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7148–7152. doi: 10.1073/pnas.92.16.7148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zamski E., Yamamoto Y. T., Williamson J. D., Conkling M. A., Pharr D. M. Immunolocalization of mannitol dehydrogenase in celery plants and cells. Plant Physiol. 1996 Nov;112(3):931–938. doi: 10.1104/pp.112.3.931. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES