Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Dec;115(4):1421–1429. doi: 10.1104/pp.115.4.1421

Identification of active-site histidine residues of a self-incompatibility ribonuclease from a wild tomato.

S Parry 1, E Newbigin 1, G Currie 1, A Bacic 1, D Oxley 1
PMCID: PMC158607  PMID: 9414554

Abstract

The style component of the self-incompatibility (S) locus of the wild tomato Lycopersicon peruvianum (L.) Mill. is an allelic series of glycoproteins with ribonuclease activity (S-RNases). Treatment of the S3-RNase from L. peruvianum with iodoacetate at pH 6.1 led to a loss of RNase activity. In the presence of a competitive inhibitor, guanosine 3'-monophosphate (3'-GMP), the rate of RNase inactivation by iodoacetate was reduced significantly. Analysis of the tryptic digestion products of the iodoacetate-modified S-RNase by reversed-phase high-performance liquid chromatography and electrospray-ionization mass spectrometry showed that histidine-32 was preferentially modified in the absence of 3'-GMP. Histidine-88 was also modified, but this occurred both in the presence and absence of 3'-GMP, suggesting that this residue is accessible when 3'-GMP is in the active site. Cysteine-150 was modified by iodoacetate in the absence of 3'-GMP and, to a lesser extent, in its presence. The results are discussed with respect to the related fungal RNase T2 family and the mechanism of S-RNase action.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biemann K. Sequencing of peptides by tandem mass spectrometry and high-energy collision-induced dissociation. Methods Enzymol. 1990;193:455–479. doi: 10.1016/0076-6879(90)93433-l. [DOI] [PubMed] [Google Scholar]
  2. Bloxham D. P. The chemical reactivity of the histidine-195 residue in lactate dehydrogenase thiomethylated at the cysteine-165 residue. Biochem J. 1981 Jan 1;193(1):93–97. doi: 10.1042/bj1930093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. CRESTFIELD A. M., STEIN W. H., MOORE S. Alkylation and identification of the histidine residues at the active site of ribonuclease. J Biol Chem. 1963 Jul;238:2413–2419. [PubMed] [Google Scholar]
  5. Endo Y., Huber P. W., Wool I. G. The ribonuclease activity of the cytotoxin alpha-sarcin. The characteristics of the enzymatic activity of alpha-sarcin with ribosomes and ribonucleic acids as substrates. J Biol Chem. 1983 Feb 25;258(4):2662–2667. [PubMed] [Google Scholar]
  6. Irie M., Ohgi K., Watanabe H., Iwama M., Nakamura K. T., Kurihara H., Nonaka T., Mitsui Y., Horiuchi H., Takagi M. pH profile of kinetic constants of RNase Rh from Rhizopus niveus and its mutant enzymes towards UpU, and possible mechanisms of RNase Rh. J Biochem. 1994 Jun;115(6):1083–1087. doi: 10.1093/oxfordjournals.jbchem.a124461. [DOI] [PubMed] [Google Scholar]
  7. Irie M., Watanabe H., Ohgi K., Harada M. Site of alkylation of the major ribonuclease from Aspergillus saitoi with iodoacetate. J Biochem. 1986 Mar;99(3):627–633. doi: 10.1093/oxfordjournals.jbchem.a135521. [DOI] [PubMed] [Google Scholar]
  8. Ishimizu T., Miyagi M., Norioka S., Liu Y. H., Clarke A. E., Sakiyama F. Identification of histidine 31 and cysteine 95 in the active site of self-incompatibility associated S6-RNase in Nicotiana alata. J Biochem. 1995 Nov;118(5):1007–1013. doi: 10.1093/jb/118.5.1007. [DOI] [PubMed] [Google Scholar]
  9. Ishimizu T., Norioka S., Kanai M., Clarke A. E., Sakiyama F. Location of cysteine and cystine residues in S-ribonucleases associated with gametophytic self-incompatibility. Eur J Biochem. 1996 Dec 15;242(3):627–635. doi: 10.1111/j.1432-1033.1996.0627r.x. [DOI] [PubMed] [Google Scholar]
  10. Jahnen W., Batterham M. P., Clarke A. E., Moritz R. L., Simpson R. J. Identification, isolation, and N-terminal sequencing of style glycoproteins associated with self-incompatibility in Nicotiana alata. Plant Cell. 1989 May;1(5):493–499. doi: 10.1105/tpc.1.5.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kawata Y., Sakiyama F., Hayashi F., Kyogoku Y. Identification of two essential histidine residues of ribonuclease T2 from Aspergillus oryzae. Eur J Biochem. 1990 Jan 12;187(1):255–262. doi: 10.1111/j.1432-1033.1990.tb15303.x. [DOI] [PubMed] [Google Scholar]
  12. Matton D. P., Nass N., Clarke A. E., Newbigin E. Self-incompatibility: how plants avoid illegitimate offspring. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):1992–1997. doi: 10.1073/pnas.91.6.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McClure B. A., Haring V., Ebert P. R., Anderson M. A., Simpson R. J., Sakiyama F., Clarke A. E. Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature. 1989 Dec 21;342(6252):955–957. doi: 10.1038/342955a0. [DOI] [PubMed] [Google Scholar]
  14. Meyer S. E., Cromartie T. H. Role of essential histidine residues in L-alpha-hydroxy acid oxidase from rat kidney. Biochemistry. 1980 Apr 29;19(9):1874–1881. doi: 10.1021/bi00550a022. [DOI] [PubMed] [Google Scholar]
  15. Nishimura H., Sempuku K., Iwashima A. Possible functional roles of carboxyl and histidine residues in a soluble thiamine-binding protein of Saccharomyces cerevisiae. Biochim Biophys Acta. 1981 May 29;668(3):333–338. doi: 10.1016/0005-2795(81)90166-5. [DOI] [PubMed] [Google Scholar]
  16. Ohgi K., Horiuchi H., Watanabe H., Iwama M., Takagi M., Irie M. Role of Asp51 and Glu105 in the enzymatic activity of a ribonuclease from Rhizopus niveus. J Biochem. 1993 Feb;113(2):219–224. doi: 10.1093/oxfordjournals.jbchem.a124029. [DOI] [PubMed] [Google Scholar]
  17. Royo J., Kowyama Y., Clarke A. E. Cloning and nucleotide sequence of two S-RNases from Lycopersicon peruvianum (L.) Mill. Plant Physiol. 1994 Jun;105(2):751–752. doi: 10.1104/pp.105.2.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Royo J., Kunz C., Kowyama Y., Anderson M., Clarke A. E., Newbigin E. Loss of a histidine residue at the active site of S-locus ribonuclease is associated with self-compatibility in Lycopersicon peruvianum. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6511–6514. doi: 10.1073/pnas.91.14.6511. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES