Abstract
UDP-glucose (UDP-Glc):fatty acid glucosyltransferases catalyze the UDP-Glc-dependent activation of fatty acids as 1-O-acyl-[beta]-glucoses. 1-O-Acyl-[beta]-glucoses act as acyl donors in the biosynthesis of 2,3,4-tri-O-acylglucoses secreted by wild tomato (Lycopersicon pennellii) glandular trichomes. The acyl composition of L. pennellii 2,3,4-tri-O-acylglucoses is dominated by branched short-chain acids (4:0 and 5:0; approximately 65%) and straight and branched medium-chain-length fatty acids (10:0 and 12:0; approximately 35%). Two operationally soluble UDP-Glc:fatty acid glucosyltransferases (I and II) were separated and partially purified from L. pennellii (LA1376) leaves by polyethylene glycol precipitation followed by DEAE-Sepharose and Cibacron Blue 3GA-agarose chromatography. Whereas both transferases possessed similar affinity for UDP-Glc, glucosyltransferase I showed higher specificity toward short-chain fatty acids (4:0) and glucosyltransferase II showed higher specificity toward medium-chain fatty acids (8:0 and 12:0). The overlapping specificity of UDP-Glc:fatty acid glucosyltransferases for 4:0 to 12:0 fatty acid chain lengths suggests that the mechanism of 6:0 to 9:0 exclusion from acyl substituents of 2,3,4-tri-O-acylglucoses is unlikely to be controlled at the level of fatty acid activation. UDP-Glc:fatty acid glucosyltransferases are also present in cultivated tomato (Lycopersicon esculentum), and activities toward 4:0, 8:0, and 12:0 fatty acids do not appear to be primarily epidermal when assayed in interspecific periclinal chimeras.
Full Text
The Full Text of this article is available as a PDF (683.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Fobes J. F., Mudd J. B., Marsden M. P. Epicuticular Lipid Accumulation on the Leaves of Lycopersicon pennellii (Corr.) D'Arcy and Lycopersicon esculentum Mill. Plant Physiol. 1985 Mar;77(3):567–570. doi: 10.1104/pp.77.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghangas G. S., Steffens J. C. UDPglucose: fatty acid transglucosylation and transacylation in triacylglucose biosynthesis. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9911–9915. doi: 10.1073/pnas.90.21.9911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goffreda J. C., Szymkowiak E. J., Sussex I. M., Mutschler M. A. Chimeric tomato plants show that aphid resistance and triacylglucose production are epidermal autonomous characters. Plant Cell. 1990 Jul;2(7):643–649. doi: 10.1105/tpc.2.7.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leznicki A. J., Bandurski R. S. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. I. Partial purification and characterization of the enzyme from Zea mays. Plant Physiol. 1988;88:1474–1480. doi: 10.1104/pp.88.4.1474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lucas W. J., Bouché-Pillon S., Jackson D. P., Nguyen L., Baker L., Ding B., Hake S. Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science. 1995 Dec 22;270(5244):1980–1983. doi: 10.1126/science.270.5244.1980. [DOI] [PubMed] [Google Scholar]
- McIntosh C. A., Latchinian L., Mansell R. L. Flavanone-specific 7-O-glucosyltransferase activity in Citrus paradisi seedlings: purification and characterization. Arch Biochem Biophys. 1990 Oct;282(1):50–57. doi: 10.1016/0003-9861(90)90085-d. [DOI] [PubMed] [Google Scholar]
- Shapiro G. G., Sharpe M., DeRouen T. A., Pierson W. E., Furukawa C. T., Virant F. S., Bierman C. W. Cromolyn versus triamcinolone acetonide for youngsters with moderate asthma. J Allergy Clin Immunol. 1991 Nov;88(5):742–748. doi: 10.1016/0091-6749(91)90181-m. [DOI] [PubMed] [Google Scholar]
- Shimizu T., Kojima M. Partial purification and characterization of UDPG:t-cinnamate glucosyltransferase in the root of sweet potato, Ipomoea batatas Lam. J Biochem. 1984 Jan;95(1):205–212. doi: 10.1093/oxfordjournals.jbchem.a134586. [DOI] [PubMed] [Google Scholar]