Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Dec;115(4):1699–1705. doi: 10.1104/pp.115.4.1699

The PsaD subunit of photosystem I. Mutations in the basic domain reduce the level of PsaD in the membranes.

V P Chitnis 1, A Ke 1, P R Chitnis 1
PMCID: PMC158636  PMID: 9414569

Abstract

The PsaD subunit of photosystem I (PSI) is a peripheral protein that provides a docking site for ferredoxin and interacts with the PsaB, PsaC, and PsaL subunits of PSI. We used site-directed mutagenesis to determine the function of a basic region in PsaD of the cyanobacterium Synechocystis sp. PCC 6803. We generated five mutant strains in which one or more charged residues were altered. Western blotting showed that replacement of lysine (Lys)-74 with glutamine or glutamic acid led to a substantial decrease in the level of PsaD in the membranes. The mutant PSI complexes showed reduced NADP+ photoreduction activity mediated by ferredoxin; the decrease in activity correlated with the reduced level of PsaD. Using protein synthesis inhibitors we showed that the degradation rates of the mutant and wild-type PsaD were similar, indicating a defect in the assembly of the mutant protein. Treatment of the mutant PSI complexes with a different concentration of NaI showed that the mutations decreased affinity between PsaD and the transmembrane components of PSI. With glutaraldehyde, the mutant and wild-type PsaD proteins could be cross-linked with PsaC, but the PsaD-PsaL cross-linked product was reduced drastically when arginine-72, Lys-74, and Lys-76 were mutated simultaneously. These studies demonstrate that the basic residues in the central region of PsaD, especially Lys-74, are crucial in the assembly of PsaD into the PSI complex.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armbrust T. S., Chitnis P. R., Guikema J. A. Organization of photosystem I polypeptides examined by chemical cross-linking. Plant Physiol. 1996;111:1307–1312. doi: 10.1104/pp.111.4.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bottin H., Lagoutte B. Ferredoxin and flavodoxin from the cyanobacterium Synechocystis sp PCC 6803. Biochim Biophys Acta. 1992 Jul 6;1101(1):48–56. doi: 10.1016/0167-4838(92)90465-p. [DOI] [PubMed] [Google Scholar]
  3. Chitnis P. R. Photosystem I. Plant Physiol. 1996 Jul;111(3):661–669. doi: 10.1104/pp.111.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chitnis P. R., Reilly P. A., Nelson N. Insertional inactivation of the gene encoding subunit II of photosystem I from the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem. 1989 Nov 5;264(31):18381–18385. [PubMed] [Google Scholar]
  5. Chitnis V. P., Chitnis P. R. PsaL subunit is required for the formation of photosystem I trimers in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett. 1993 Dec 27;336(2):330–334. doi: 10.1016/0014-5793(93)80831-e. [DOI] [PubMed] [Google Scholar]
  6. Chitnis V. P., Jungs Y. S., Albee L., Golbeck J. H., Chitnis P. R. Mutational analysis of photosystem I polypeptides. Role of PsaD and the lysyl 106 residue in the reductase activity of the photosystem I. J Biol Chem. 1996 May 17;271(20):11772–11780. doi: 10.1074/jbc.271.20.11772. [DOI] [PubMed] [Google Scholar]
  7. Chitnis V. P., Xu Q., Yu L., Golbeck J. H., Nakamoto H., Xie D. L., Chitnis P. R. Targeted inactivation of the gene psaL encoding a subunit of photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem. 1993 Jun 5;268(16):11678–11684. [PubMed] [Google Scholar]
  8. Jansson S., Andersen B., Scheller H. V. Nearest-neighbor analysis of higher-plant photosystem I holocomplex. Plant Physiol. 1996 Sep;112(1):409–420. doi: 10.1104/pp.112.1.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Krauss N., Schubert W. D., Klukas O., Fromme P., Witt H. T., Saenger W. Photosystem I at 4 A resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nat Struct Biol. 1996 Nov;3(11):965–973. doi: 10.1038/nsb1196-965. [DOI] [PubMed] [Google Scholar]
  10. Lelong C., Sétif P., Lagoutte B., Bottin H. Identification of the amino acids involved in the functional interaction between photosystem I and ferredoxin from Synechocystis sp. PCC 6803 by chemical cross-linking. J Biol Chem. 1994 Apr 1;269(13):10034–10039. [PubMed] [Google Scholar]
  11. Li N., Zhao J. D., Warren P. V., Warden J. T., Bryant D. A., Golbeck J. H. PsaD is required for the stable binding of PsaC to the photosystem I core protein of Synechococcus sp. PCC 6301. Biochemistry. 1991 Aug 6;30(31):7863–7872. doi: 10.1021/bi00245a028. [DOI] [PubMed] [Google Scholar]
  12. McIntosh D. B. Glutaraldehyde cross-links Lys-492 and Arg-678 at the active site of sarcoplasmic reticulum Ca(2+)-ATPase. J Biol Chem. 1992 Nov 5;267(31):22328–22335. [PubMed] [Google Scholar]
  13. Minai L., Cohen Y., Chitnis P. R., Nechushtai R. The precursor of PsaD assembles into the photosystem I complex in two steps. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6338–6342. doi: 10.1073/pnas.93.13.6338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sun J., Xu Q., Chitnis V. P., Jin P., Chitnis P. R. Topography of the photosystem I core proteins of the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem. 1997 Aug 29;272(35):21793–21802. doi: 10.1074/jbc.272.35.21793. [DOI] [PubMed] [Google Scholar]
  15. Sétif P. Q., Bottin H. Laser flash absorption spectroscopy study of ferredoxin reduction by photosystem I in Synechocystis sp. PCC 6803: evidence for submicrosecond and microsecond kinetics. Biochemistry. 1994 Jul 19;33(28):8495–8504. doi: 10.1021/bi00194a014. [DOI] [PubMed] [Google Scholar]
  16. Xu Q., Armbrust T. S., Guikema J. A., Chitnis P. R. Organization of Photosystem I Polypeptides (A Structural Interaction between the PsaD and PsaL Subunits). Plant Physiol. 1994 Nov;106(3):1057–1063. doi: 10.1104/pp.106.3.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Xu Q., Guikema J. A., Chitnis P. R. Identification of surface-exposed domains on the reducing side of photosystem I. Plant Physiol. 1994 Oct;106(2):617–624. doi: 10.1104/pp.106.2.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Xu Q., Hoppe D., Chitnis V. P., Odom W. R., Guikema J. A., Chitnis P. R. Mutational analysis of photosystem I polypeptides in the cyanobacterium Synechocystis sp. PCC 6803. Targeted inactivation of psaI reveals the function of psaI in the structural organization of psaL. J Biol Chem. 1995 Jul 7;270(27):16243–16250. doi: 10.1074/jbc.270.27.16243. [DOI] [PubMed] [Google Scholar]
  19. Xu Q., Odom W. R., Guikema J. A., Chitnis V. P., Chitnis P. R. Targeted deletion of psaJ from the cyanobacterium Synechocystis sp. PCC 6803 indicates structural interactions between the PsaJ and PsaF subunits of photosystem I. Plant Mol Biol. 1994 Oct;26(1):291–302. doi: 10.1007/BF00039540. [DOI] [PubMed] [Google Scholar]
  20. Zanetti G., Merati G. Interaction between photosystem I and ferredoxin. Identification by chemical cross-linking of the polypeptide which binds ferredoxin. Eur J Biochem. 1987 Nov 16;169(1):143–146. doi: 10.1111/j.1432-1033.1987.tb13591.x. [DOI] [PubMed] [Google Scholar]
  21. Zilber A. L., Malkin R. Ferredoxin Cross-Links to a 22 kD Subunit of Photosystem I. Plant Physiol. 1988 Nov;88(3):810–814. doi: 10.1104/pp.88.3.810. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES