Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Dec;115(4):1707–1719. doi: 10.1104/pp.115.4.1707

Properties of Two Outward-Rectifying Channels in Root Xylem Parenchyma Cells Suggest a Role in K+ Homeostasis and Long-Distance Signaling.

L H Wegner 1, A H De Boer 1
PMCID: PMC158637  PMID: 12223889

Abstract

Xylem parenchyma cells (XPCs) control the composition of the transpiration stream in plants and are thought to play a role in long-distance signaling as well. We addressed the regulation, selectivity, and dependence on the apoplastic ion concentrations of two types of outward rectifiers in the plasma membrane of XPCs, to assess the physiological role of these conductances. In whole-cell recordings, the membrane conductance at depolarization was under the control of cytosolic Ca2+: at physiological Ca2+ levels (150 nM) the K+ outward-rectifying conductance (KORC) predominated, whereas at elevated Ca2+ levels (5 [mu]M), only the nonselective outward-rectifying conductance (NORC) was active. No such regulatory effect of Ca2+ was observed in inside-out experiments. The voltage dependence of whole-cell KORC currents strongly depended on apoplastic K+ concentration: an increase in apoplastic K+ resulted in a positive shift of the current-voltage curve, roughly following the shift in Nernst potential of K+. KORC is impermeable to Na+, but does translocate Ca2+ in addition to K+. In contrast to KORC, NORC selected poorly among monovalent cations and anions, the relative permeability PC+/PA- being about 1.9. Gating of NORC was largely unaffected by the level of K+ in the bath. Under all ionic conditions tested, NORC tail currents or single-channel currents reversed close to 0 mV. Using an in vivo xylem-perfusion technique, tetraethylammonium (an inhibitor of KORC) was shown to block K+ transport to the shoot. These data support the hypothesis that release of K+ to the xylem sap is mediated by KORC. The molecular properties of these two conductances are discussed in the light of the distinct physiological role of XPCs.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bush D. S. Regulation of Cytosolic Calcium in Plants. Plant Physiol. 1993 Sep;103(1):7–13. doi: 10.1104/pp.103.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Föhr K. J., Warchol W., Gratzl M. Calculation and control of free divalent cations in solutions used for membrane fusion studies. Methods Enzymol. 1993;221:149–157. doi: 10.1016/0076-6879(93)21014-y. [DOI] [PubMed] [Google Scholar]
  3. Goodman M. T., Nomura A. M., Wilkens L. R., Kolonel L. N. Agreement between interview information and physician records on history of menopausal estrogen use. Am J Epidemiol. 1990 May;131(5):815–825. doi: 10.1093/oxfordjournals.aje.a115572. [DOI] [PubMed] [Google Scholar]
  4. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  5. Lewis C. A. Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J Physiol. 1979 Jan;286:417–445. doi: 10.1113/jphysiol.1979.sp012629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Neher E. Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol. 1992;207:123–131. doi: 10.1016/0076-6879(92)07008-c. [DOI] [PubMed] [Google Scholar]
  7. Schaller G. E., Harmon A. C., Sussman M. R. Characterization of a calcium- and lipid-dependent protein kinase associated with the plasma membrane of oat. Biochemistry. 1992 Feb 18;31(6):1721–1727. doi: 10.1021/bi00121a020. [DOI] [PubMed] [Google Scholar]
  8. Vogelzang S. A., Prins H. B. Patch clamp analysis of the dominant plasma membrane K+ channel in root cell protoplasts of Plantago media L. Its significance for the P and K state. J Membr Biol. 1994 Aug;141(2):113–122. doi: 10.1007/BF00238245. [DOI] [PubMed] [Google Scholar]
  9. Ward J. M., Schroeder J. I. Calcium-Activated K+ Channels and Calcium-Induced Calcium Release by Slow Vacuolar Ion Channels in Guard Cell Vacuoles Implicated in the Control of Stomatal Closure. Plant Cell. 1994 May;6(5):669–683. doi: 10.1105/tpc.6.5.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wegner L. H., De Boer A. H., Raschke K. Properties of the K+ inward rectifier in the plasma membrane of xylem parenchyma cells from barley roots: effects of TEA+, Ca2+, Ba2+ and La3+. J Membr Biol. 1994 Dec;142(3):363–379. doi: 10.1007/BF00233442. [DOI] [PubMed] [Google Scholar]
  11. Wegner L. H., Raschke K. Ion Channels in the Xylem Parenchyma of Barley Roots (A Procedure to Isolate Protoplasts from This Tissue and a Patch-Clamp Exploration of Salt Passageways into Xylem Vessels. Plant Physiol. 1994 Jul;105(3):799–813. doi: 10.1104/pp.105.3.799. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES