Abstract
The flavoenzyme ferredoxin-NADP+ reductase (FNR) is a member of the cellular defense barrier against oxidative damage in Escherichia coli. We evaluated the responses of chloroplast FNR to methyl viologen, a superoxide radical propagator, in wheat (Triticum aestivum L.) plants and chloroplasts. Treatments with the herbicide showed little effect on the levels of FNR protein or transcripts, indicating that expression of this reductase is not upregulated by oxidants in plants. Viologens and peroxides caused solubilization of active FNR from the thylakoids into the stroma, converting the enzyme from a membrane-bound NADPH producer to a soluble NADPH consumer. This response appeared specific for FNR, since other thylakoid proteins were unaffected by the treatments. The reductase-binding protein was released together with FNR, suggesting that it might be the target of oxidative modification. Stromal accumulation of a functional NADPH reductase in response to oxidative stress is formally analogous to the induction of FNR synthesis observed in E. coli under similar conditions. FNR solubilization may be playing a crucial role in maintaining the NADPH/NADP+ homeostasis of the stressed plastid. The unchecked accumulation of NADPH might otherwise increase the risks of oxidative damage through a rise in the Mehler reaction rates and/or the production of hydroxyl radicals.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen R. D. Dissection of Oxidative Stress Tolerance Using Transgenic Plants. Plant Physiol. 1995 Apr;107(4):1049–1054. doi: 10.1104/pp.107.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arakaki A. K., Ceccarelli E. A., Carrillo N. Plant-type ferredoxin-NADP+ reductases: a basal structural framework and a multiplicity of functions. FASEB J. 1997 Feb;11(2):133–140. doi: 10.1096/fasebj.11.2.9039955. [DOI] [PubMed] [Google Scholar]
- Bianchi V., Haggård-Ljungquist E., Pontis E., Reichard P. Interruption of the ferredoxin (flavodoxin) NADP+ oxidoreductase gene of Escherichia coli does not affect anaerobic growth but increases sensitivity to paraquat. J Bacteriol. 1995 Aug;177(15):4528–4531. doi: 10.1128/jb.177.15.4528-4531.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biehler K., Fock H. Evidence for the Contribution of the Mehler-Peroxidase Reaction in Dissipating Excess Electrons in Drought-Stressed Wheat. Plant Physiol. 1996 Sep;112(1):265–272. doi: 10.1104/pp.112.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowler C., Chua N. H. Emerging themes of plant signal transduction. Plant Cell. 1994 Nov;6(11):1529–1541. doi: 10.1105/tpc.6.11.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ceccarelli E. A., Viale A. M., Krapp A. R., Carrillo N. Expression, assembly, and processing of an active plant ferredoxin-NADP+ oxidoreductase and its precursor protein in Escherichia coli. J Biol Chem. 1991 Aug 5;266(22):14283–14287. [PubMed] [Google Scholar]
- Desimone M., Henke A., Wagner E. Oxidative Stress Induces Partial Degradation of the Large Subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase in Isolated Chloroplasts of Barley. Plant Physiol. 1996 Jul;111(3):789–796. doi: 10.1104/pp.111.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foyer C. H. Oxygen processing in photosynthesis. Biochem Soc Trans. 1996 May;24(2):427–433. doi: 10.1042/bst0240427. [DOI] [PubMed] [Google Scholar]
- Hidalgo E., Ding H., Demple B. Redox signal transduction via iron-sulfur clusters in the SoxR transcription activator. Trends Biochem Sci. 1997 Jun;22(6):207–210. doi: 10.1016/s0968-0004(97)01068-2. [DOI] [PubMed] [Google Scholar]
- Keyer K., Gort A. S., Imlay J. A. Superoxide and the production of oxidative DNA damage. J Bacteriol. 1995 Dec;177(23):6782–6790. doi: 10.1128/jb.177.23.6782-6790.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krapp A. R., Carrillo N. Functional complementation of the mvrA mutation of Escherichia coli by plant ferredoxin-NADP+ oxidoreductase. Arch Biochem Biophys. 1995 Feb 20;317(1):215–221. doi: 10.1006/abbi.1995.1156. [DOI] [PubMed] [Google Scholar]
- Landry L. G., Pell E. J. Modification of Rubisco and Altered Proteolytic Activity in O3-Stressed Hybrid Poplar (Populus maximowizii x trichocarpa). Plant Physiol. 1993 Apr;101(4):1355–1362. doi: 10.1104/pp.101.4.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mehta R. A., Fawcett T. W., Porath D., Mattoo A. K. Oxidative stress causes rapid membrane translocation and in vivo degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase. J Biol Chem. 1992 Feb 5;267(4):2810–2816. [PubMed] [Google Scholar]
- Morigasaki S., Jin T., Wada K. Comparative Studies on Ferredoxin-NADP+ Oxidoreductase Isoenzymes Derived from Different Organs by Antibodies Specific for the Radish Root- and Leaf-Enzymes. Plant Physiol. 1993 Oct;103(2):435–440. doi: 10.1104/pp.103.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHIN M., ARNON D. I. ENZYMIC MECHANISMS OF PYRIDINE NUCLEOTIDE REDUCTION IN CHLOROPLASTS. J Biol Chem. 1965 Mar;240:1405–1411. [PubMed] [Google Scholar]
- Serra E. C., Carrillo N., Krapp A. R., Ceccarelli E. A. One-step purification of plant ferredoxin-NADP+ oxidoreductase expressed in Escherichia coli as fusion with glutathione S-transferase. Protein Expr Purif. 1993 Dec;4(6):539–546. doi: 10.1006/prep.1993.1071. [DOI] [PubMed] [Google Scholar]
- Shinozaki K., Sugiura M. Sequence of the intercistronic region between the ribulose-1, 5-bisphosphate carboxylase/oxygenase large subunit and coupling factor beta subunit gene. Nucleic Acids Res. 1982 Aug 25;10(16):4923–4934. doi: 10.1093/nar/10.16.4923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vallejos R. H., Ceccarelli E., Chan R. Evidence for the existence of a thylakoid intrinsic protein that binds ferredoxin-NADP+ oxidoreductase. J Biol Chem. 1984 Jul 10;259(13):8048–8051. [PubMed] [Google Scholar]