Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Jan;101(1):65–71. doi: 10.1104/pp.101.1.65

The pH Dependence of Violaxanthin Deepoxidation in Isolated Pea Chloroplasts.

E E Pfundel 1, R A Dilley 1
PMCID: PMC158648  PMID: 12231666

Abstract

The absorbance change at 505 nm was used to monitor the kinetics of violaxanthin deepoxidation in isolated pea (Pisum sativum) chloroplasts under dark conditions at various pH values. In long-term measurements (65 min) a fast and a slow exponential component of the 505-nm absorbance change could be resolved. The fast rate constant was up to 10 times higher than the slow rate constant. The asymptote value of the fast kinetic component was twice that of the slow component. The pH dependency of the parameters of the fast kinetic component was analyzed from pH 5.2 to pH 7.0. It was found that the asymptote value dropped slightly with increasing pH. The rate constant was zero at pH values greater than 6.3 and showed maximum values at pH values less than 5.8. Hill plot analysis revealed a strong positive cooperativity for the pH dependency of the fast rate constant (Hill coefficient nH = 5.3). The results are discussed with respect to published activity curves of violaxanthin deepoxidation.

Full Text

The Full Text of this article is available as a PDF (716.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bilger W., Björkman O., Thayer S. S. Light-induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of xanthophyll cycle components in cotton leaves. Plant Physiol. 1989 Oct;91(2):542–551. doi: 10.1104/pp.91.2.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Pfündel E. E., Pan R. S., Dilley R. A. Inhibition of violaxanthin deepoxidation by ultraviolet-B radiation in isolated chloroplasts and intact leaves. Plant Physiol. 1992 Apr;98(4):1372–1380. doi: 10.1104/pp.98.4.1372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Siefermann D., Yamamoto H. Y. Light-induced de-epoxidation of violaxanthin in lettuce chloroPLASTS. III. Reaction kinetics and effect of light intensity on de-epoxidase activity and substrate availability. Biochim Biophys Acta. 1974 Jul 25;357(1):144–150. doi: 10.1016/0005-2728(74)90119-4. [DOI] [PubMed] [Google Scholar]
  5. Siefermann D., Yamamoto H. Y. Light-induced de-epoxidation of violaxanthin in lettuce chloroplasts. IV. The effects of electron-transport conditions on violaxanthin availability. Biochim Biophys Acta. 1975 Apr 14;387(1):149–158. doi: 10.1016/0005-2728(75)90059-6. [DOI] [PubMed] [Google Scholar]
  6. Siefermann D., Yamamoto H. Y. Properties of NADPH and oxygen-dependent zeaxanthin epoxidation in isolated chloroplasts. A transmembrane model for the violaxanthin cycle. Arch Biochem Biophys. 1975 Nov;171(1):70–77. doi: 10.1016/0003-9861(75)90008-9. [DOI] [PubMed] [Google Scholar]
  7. Yamamoto H. Y., Kamite L., Wang Y. Y. An Ascorbate-induced Absorbance Change in Chloroplasts from Violaxanthin De-epoxidation. Plant Physiol. 1972 Feb;49(2):224–228. doi: 10.1104/pp.49.2.224. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES