Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Jan;101(1):135–139. doi: 10.1104/pp.101.1.135

Calcium Transport in Membrane Vesicles Isolated from Maize Coleoptiles (Effect of Indoleacetic Acid and Fusicoccin).

G Zocchi 1, G Rabotti 1
PMCID: PMC158657  PMID: 12231672

Abstract

Maize (Zea mays L.) coleoptile segments loaded with 45Ca released about 50% of the ion after 1 h when treated with indoleacetic acid (IAA). In contrast, fusicoccin (FC) had no effect. The same relation was found when ATP-dependent Ca2+ transport, measured as 45Ca uptake, was determined in a plasmalemma-rich membrane vesicle fraction isolated from coleoptiles treated or untreated for 1 h with IAA or FC. In fact, IAA-treated membranes showed an increase in ATP-dependent 45Ca uptake by more than 30% with respect to the control and the FC treatment. Ca2+ uptake in IAA-treated membranes was only slightly affected (+27%) by supplying calmodulin (Cam) exogenously. However, Ca2+ uptake in membranes from the control and FC-treated coleoptiles were stimulated (+80%) by exogenous Cam. Calmidazolium, a Cam antagonist, inhibited Ca2+ uptake in the IAA treatment (-48%) to a greater extent with respect to the control and FC treatment (-33 and -29%, respectively). A possible relationship between the effect of IAA on the ATP-dependent Ca2+ transport activity, the involvement of Cam, and their effect on growth are discussed.

Full Text

The Full Text of this article is available as a PDF (528.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. De Michelis M. I., Pugliarello M. C., Rasi-Caldogno F. Fusicoccin Binding to Its Plasma Membrane Receptor and the Activation of the Plasma Membrane H-ATPase: I. Characteristics and Intracellular Localization of the Fusicoccin Receptor in Microsomes from Radish Seedlings. Plant Physiol. 1989 May;90(1):133–139. doi: 10.1104/pp.90.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Drøbak B. K., Ferguson I. B. Release of Ca2+ from plant hypocotyl microsomes by inositol-1,4,5-trisphosphate. Biochem Biophys Res Commun. 1985 Aug 15;130(3):1241–1246. doi: 10.1016/0006-291x(85)91747-4. [DOI] [PubMed] [Google Scholar]
  4. Ettlinger C., Lehle L. Auxin induces rapid changes in phosphatidylinositol metabolites. Nature. 1988 Jan 14;331(6152):176–178. doi: 10.1038/331176a0. [DOI] [PubMed] [Google Scholar]
  5. Felle H., Brummer B., Bertl A., Parish R. W. Indole-3-acetic acid and fusicoccin cause cytosolic acidification of corn coleoptile cells. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8992–8995. doi: 10.1073/pnas.83.23.8992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gehring C. A., Irving H. R., Parish R. W. Effects of auxin and abscisic acid on cytosolic calcium and pH in plant cells. Proc Natl Acad Sci U S A. 1990 Dec 15;87(24):9645–9649. doi: 10.1073/pnas.87.24.9645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kubowicz B. D., Vanderhoef L. N., Hanson J. B. ATP-Dependent Calcium Transport in Plasmalemma Preparations from Soybean Hypocotyls : EFFECT OF HORMONE TREATMENTS. Plant Physiol. 1982 Jan;69(1):187–191. doi: 10.1104/pp.69.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Poovaiah B. W., Reddy A. S. Calcium messenger system in plants. CRC Crit Rev Plant Sci. 1987;6(1):47–103. doi: 10.1080/07352688709382247. [DOI] [PubMed] [Google Scholar]
  9. Reddy A. S., Chengappa S., Poovaiah B. W. Auxin-regulated changes in protein phosphorylation in pea epicotyls. Biochem Biophys Res Commun. 1987 Apr 29;144(2):944–950. doi: 10.1016/s0006-291x(87)80055-4. [DOI] [PubMed] [Google Scholar]
  10. Schumaker K. S., Sze H. A Ca/H Antiport System Driven by the Proton Electrochemical Gradient of a Tonoplast H-ATPase from Oat Roots. Plant Physiol. 1985 Dec;79(4):1111–1117. doi: 10.1104/pp.79.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Veluthambi K., Poovaiah B. W. In vitro and in vivo protein phosphorylation in Avena sativa L. coleoptiles: effects of Ca2+, calmodulin antagonists, and auxin. Plant Physiol. 1986 Jul;81(3):836–841. doi: 10.1104/pp.81.3.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Zocchi G. Comparison of the effect of indoleacetic Acid and fusicoccin on the breakdown of phosphatidylinositol in maize coleoptiles. Plant Physiol. 1990 Nov;94(3):1009–1011. doi: 10.1104/pp.94.3.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES