Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Jan;101(1):217–226. doi: 10.1104/pp.101.1.217

Constitutive and Inducible Aerobic and Anaerobic Stress Proteins in the Echinochloa Complex and Rice.

C V Mujer 1, M E Rumpho 1, J J Lin 1, R A Kennedy 1
PMCID: PMC158667  PMID: 12231678

Abstract

Anaerobic stress resulted in a change in the protein accumulation patterns in shoots of several Echinochloa (barnyard grass) species and Oryza sativa (L.) (rice) as resolved by two-dimensional gel electrophoresis. Of the six Echinochloa species investigated, E. phyllopogon (Stev.) Koss, E. muricata (Beauv.) Fern, E. oryzoides (Ard.) Fritsch Clayton, and E. crus-galli (L.) Beauv. are tolerant of anaerobiosis and germinate in the absence of oxygen, as does rice. In contrast, E. crus-pavonis (H.B.K.) Schult and E. colonum (L.) Link are intolerant and do not germinate without oxygen. Computer analysis of the protein patterns from the four tolerant species and rice indicated that the anaerobic response is of five classes: class 1 proteins, enhanced under anaerobiosis (9 to 13 polypeptides ranging from 16-68 kD); class 2 proteins, unique to anaerobiosis (1 to 5 polypeptides ranging from 17-69 kD); class 3 proteins, remained constant under aerobiosis and anaerobiosis; class 4 proteins, prominent only in air and repressed under anoxia (3 to 7 polypeptides ranging from 19-45 kD); and class 5 proteins, unique to aerobiosis (1 to 4 polypeptides ranging from 18-63 kD). In the intolerant species, E. colonum and E. crus-pavonis, no polypeptides were enhanced or repressed under anoxia (class 1 and class 4, respectively), whereas in the tolerant Echinochloa species and rice, a total of at least 9 to 13 anaerobic stress proteins and 4 to 7 "aerobic" proteins were noted. Immunoblotting identified two of the major anaerobic stress proteins as fructose-1,6-bisphosphate aldolase and pyruvate decarboxylase. Based on the differential response of the intolerant species to anaerobiosis, we suggest that another set of genes, whose products may not necessarily be among the major anaerobic stress polypeptides, might confer tolerance in Echinochloa under prolonged anaerobic stress.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Hoffman N. E., Bent A. F., Hanson A. D. Induction of lactate dehydrogenase isozymes by oxygen deficit in barley root tissue. Plant Physiol. 1986 Nov;82(3):658–663. doi: 10.1104/pp.82.3.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hruschka W. R. Computerized comparison of two autoradiographs. Clin Chem. 1984 Dec;30(12 Pt 1):2037–2039. [PubMed] [Google Scholar]
  3. Kelley P. M., Freeling M. Anaerobic expression of maize glucose phosphate isomerase I. J Biol Chem. 1984 Jan 10;259(1):673–677. [PubMed] [Google Scholar]
  4. Kelley P. M., Tolan D. R. The complete amino Acid sequence for the anaerobically induced aldolase from maize derived from cDNA clones. Plant Physiol. 1986 Dec;82(4):1076–1080. doi: 10.1104/pp.82.4.1076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kennedy R. A., Rumpho M. E., Fox T. C. Anaerobic metabolism in plants. Plant Physiol. 1992 Sep;100(1):1–6. doi: 10.1104/pp.100.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kennedy R. A., Rumpho M. E., Vanderzee D. Germination of Echinochloa crus-galli (Barnyard Grass) Seeds under Anaerobic Conditions : Respiration and Response to Metabolic Inhibitors. Plant Physiol. 1983 Jul;72(3):787–794. doi: 10.1104/pp.72.3.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Llewellyn D. J., Finnegan E. J., Ellis J. G., Dennis E. S., Peacock W. J. Structure and expression of an alcohol dehydrogenase 1 gene from Pisum sativum (cv. "Greenfeast"). J Mol Biol. 1987 May 5;195(1):115–123. doi: 10.1016/0022-2836(87)90331-7. [DOI] [PubMed] [Google Scholar]
  8. Mocquot B., Prat C., Mouches C., Pradet A. Effect of anoxia on energy charge and protein synthesis in rice embryo. Plant Physiol. 1981 Sep;68(3):636–640. doi: 10.1104/pp.68.3.636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
  10. Rivoal J., Ricard B., Pradet A. Lactate Dehydrogenase in Oryza sativa L. Seedlings and Roots: Identification and Partial Characterization. Plant Physiol. 1991 Mar;95(3):682–686. doi: 10.1104/pp.95.3.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rumpho M. E., Kennedy R. A. Anaerobic Metabolism in Germinating Seeds of Echinochloa crus-galli (Barnyard Grass) : METABOLITE AND ENZYME STUDIES. Plant Physiol. 1981 Jul;68(1):165–168. doi: 10.1104/pp.68.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Russell D. A., Sachs M. M. Differential expression and sequence analysis of the maize glyceraldehyde-3-phosphate dehydrogenase gene family. Plant Cell. 1989 Aug;1(8):793–803. doi: 10.1105/tpc.1.8.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sachs M. M., Freeling M., Okimoto R. The anaerobic proteins of maize. Cell. 1980 Jul;20(3):761–767. doi: 10.1016/0092-8674(80)90322-0. [DOI] [PubMed] [Google Scholar]
  14. Spiro S., Guest J. R. Adaptive responses to oxygen limitation in Escherichia coli. Trends Biochem Sci. 1991 Aug;16(8):310–314. doi: 10.1016/0968-0004(91)90125-f. [DOI] [PubMed] [Google Scholar]
  15. Springer B., Werr W., Starlinger P., Bennett D. C., Zokolica M., Freeling M. The Shrunken gene on chromosome 9 of Zea mays L is expressed in various plant tissues and encodes an anaerobic protein. Mol Gen Genet. 1986 Dec;205(3):461–468. doi: 10.1007/BF00338083. [DOI] [PubMed] [Google Scholar]
  16. Tanksley S. D., Jones R. A. Effects of O2 stress on tomato alcohol dehydrogenase activity: description of a second ADH coding genes. Biochem Genet. 1981 Apr;19(3-4):397–409. doi: 10.1007/BF00504283. [DOI] [PubMed] [Google Scholar]
  17. Tihanyi K., Fontanell A., Thirion J. P. Gene regulation during anaerobiosis in soya roots. Biochem Genet. 1989 Dec;27(11-12):719–730. doi: 10.1007/BF02396063. [DOI] [PubMed] [Google Scholar]
  18. Xie Y., Wu R. Rice alcohol dehydrogenase genes: anaerobic induction, organ specific expression and characterization of cDNA clones. Plant Mol Biol. 1989 Jul;13(1):53–68. doi: 10.1007/BF00027335. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES