Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Jan;101(1):227–236. doi: 10.1104/pp.101.1.227

Light-induced biogenesis of light-harvesting complex I (LHC I) during chloroplast development in barley (hordeum vulgare). Studies using cDNA clones of the 21- and 20-kilodalton LHC I apoproteins.

S Anandan 1, D T Morishige 1, J P Thornber 1
PMCID: PMC158668  PMID: 8278496

Abstract

The light-harvesting complex (LHC) Ib pigment-proteins form the major component of the LHC I complex in higher plants. They comprise chlorophylls a and b, xanthophylls, and at least two polypeptide subunits of 21 and 20 kD in barley (Hordeum vulgare). We have identified two cDNA clones, LHC Ib-21 and LHC Ib-20, encoding the 21- and 20-kD LHC Ib apoproteins, respectively. N-terminal protein sequences of the purified LHC Ib polypeptides were used for the unequivocal correlation of these clones to their respective apoproteins. The cDNA clones encode two proteins that have strong sequence similarity to other LHC I and LHC II pigment-binding polypeptides of photosystems I and II. The 21-kD polypeptide contains 201 amino acid residues (22.14 kD), and the 20-kD polypeptide contains 200 amino acid residues (22.18 kD). The biogenesis of the LHC Ib apoproteins and the pigmented LHC I during the light-induced development of the chloroplast was studied. Accumulation of the two LHC Ib mRNAs is induced by light, and their amount is regulated by phytochrome. LHC Ib polypeptide accumulation in the thylakoid membrane temporally lags behind transcript accumulation. The rates of accumulation of LHC Ib transcripts and of their apoproteins lag behind those of the major LHC II component, LHC IIb. Complete assembly of the LHC Ib pigment-protein, as observed by low-temperature fluorescence spectroscopy, requires exposure of dark-grown seedlings to 72 h or more of light.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anandan S., Vainstein A., Thornber J. P. Correlation of some published amino acid sequences for photosystem I polypeptides to a 17 kDa LHCI pigment-protein and to subunits III and IV of the core complex. FEBS Lett. 1989 Oct 9;256(1-2):150–154. doi: 10.1016/0014-5793(89)81737-5. [DOI] [PubMed] [Google Scholar]
  2. Apel K., Kloppstech K. The plastid membranes of barley (Hordeum vulgare). Light-induced appearance of mRNA coding for the apoprotein of the light-harvesting chlorophyll a/b protein. Eur J Biochem. 1978 Apr 17;85(2):581–588. doi: 10.1111/j.1432-1033.1978.tb12273.x. [DOI] [PubMed] [Google Scholar]
  3. Bellemare G., Bartlett S. G., Chua N. H. Biosynthesis of chlorophyll a/b-binding polypeptides in wild type and the chlorina f2 mutant of barley. J Biol Chem. 1982 Jul 10;257(13):7762–7767. [PubMed] [Google Scholar]
  4. Darr S. C., Somerville S. C., Arntzen C. J. Monoclonal antibodies to the light-harvesting chlorophyll a/b protein complex of photosystem II. J Cell Biol. 1986 Sep;103(3):733–740. doi: 10.1083/jcb.103.3.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eichacker L. A., Soll J., Lauterbach P., Rüdiger W., Klein R. R., Mullet J. E. In vitro synthesis of chlorophyll a in the dark triggers accumulation of chlorophyll a apoproteins in barley etioplasts. J Biol Chem. 1990 Aug 15;265(23):13566–13571. [PubMed] [Google Scholar]
  6. Gavel Y., von Heijne G. A conserved cleavage-site motif in chloroplast transit peptides. FEBS Lett. 1990 Feb 26;261(2):455–458. doi: 10.1016/0014-5793(90)80614-o. [DOI] [PubMed] [Google Scholar]
  7. Hoffman N. E., Pichersky E., Malik V. S., Castresana C., Ko K., Darr S. C., Cashmore A. R. A cDNA clone encoding a photosystem I protein with homology to photosystem II chlorophyll a/b-binding polypeptides. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8844–8848. doi: 10.1073/pnas.84.24.8844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Klein R. R., Mullet J. E. Regulation of chloroplast-encoded chlorophyll-binding protein translation during higher plant chloroplast biogenesis. J Biol Chem. 1986 Aug 25;261(24):11138–11145. [PubMed] [Google Scholar]
  9. Kuang T. Y., Argyroudi-Akoyunoglou J. H., Nakatani H. Y., Watson J., Arntzen C. J. The origin of the long-wavelength fluorescence emission band (77 degrees K) from photosystem I. Arch Biochem Biophys. 1984 Dec;235(2):618–627. doi: 10.1016/0003-9861(84)90236-4. [DOI] [PubMed] [Google Scholar]
  10. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  11. Kühlbrandt W., Wang D. N. Three-dimensional structure of plant light-harvesting complex determined by electron crystallography. Nature. 1991 Mar 14;350(6314):130–134. doi: 10.1038/350130a0. [DOI] [PubMed] [Google Scholar]
  12. Michel H., Griffin P. R., Shabanowitz J., Hunt D. F., Bennett J. Tandem mass spectrometry identifies sites of three post-translational modifications of spinach light-harvesting chlorophyll protein II. Proteolytic cleavage, acetylation, and phosphorylation. J Biol Chem. 1991 Sep 15;266(26):17584–17591. [PubMed] [Google Scholar]
  13. Morishige D. T., Thornber J. P. Identification and Analysis of a Barley cDNA Clone Encoding the 31-Kilodalton LHC IIa (CP29) Apoprotein of the Light-Harvesting Antenna Complex of Photosystem II. Plant Physiol. 1992 Jan;98(1):238–245. doi: 10.1104/pp.98.1.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Silverthorne J., Tobin E. M. Demonstration of transcriptional regulation of specific genes by phytochrome action. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1112–1116. doi: 10.1073/pnas.81.4.1112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tobin E. M. Light regulation of specific mRNA species in Lemna gibba L. G-3. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4749–4753. doi: 10.1073/pnas.75.10.4749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vierling E., Alberte R. S. Regulation of synthesis of the photosystem I reaction center. J Cell Biol. 1983 Dec;97(6):1806–1814. doi: 10.1083/jcb.97.6.1806. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES