Abstract
Transgenic plants overproducing indole-3-acetic acid (IAA) from expression of the Agrobacterium tumefaciens T-DNA IAA biosynthesis genes were used to study the conjugation of IAA. At the 11-node stage, free IAA, as well as ester- and amide-conjugated IAA, was analyzed in wild-type tobacco SR1 and in transgenic plants denoted 35S-iaaM/iaaH (line C) and 35S-iaaM x 35S-iaaH (line X). The transgenic plants contained increased levels of both free and conjugated IAA, and the main increase in IAA conjugates occurred in amide conjugates. Two amide conjugates were identified by fritfast atom bombardment liquid chromatography-mass spectrometry as indole-3-acetylaspartic acid (IAAsp) and indole-3-acetylglutamic acid (IAGlu), and one ester conjugate was identified as indole-3-acetylglucose. IAAsp and IAGlu were also identified as endogenous substances in wild-type plants. In wild-type plants, the percent of total IAA in the free form was significantly higher in young leaves (73 [plus or minus] 7%, SD) than in old leaves (36 [plus or minus] 8%), whereas there was no difference between young (73 [plus or minus] 8%) and old internodes (70 [plus or minus] 9%). In IAA-overproducing transformants, both free and conjugated IAA levels were increased, but the percent free IAA was maintained constant (57 [plus or minus] 10%) for both leaves and internodes, independent of the total IAA level or tissue age. These results suggest that synthesis or transport of IAA conjugates is regulated in the vegetative wild-type plant, and that different organs possess a unique balance between free and conjugated IAA. The IAA-overproducing plant, however, acquires a lower proportion of free IAA in the stem and younger leaves, presumably determined by a higher conjugation in those tissues compared with wild type.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bandurski R. S., Schulze A., Cohen J. D. Photo-regulation of the ratio of ester to free indole-3-acetic acid. Biochem Biophys Res Commun. 1977 Dec 21;79(4):1219–1223. doi: 10.1016/0006-291x(77)91136-6. [DOI] [PubMed] [Google Scholar]
- Bandurski R. S., Schulze A. Concentration of Indole-3-acetic Acid and Its Derivatives in Plants. Plant Physiol. 1977 Aug;60(2):211–213. doi: 10.1104/pp.60.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bialek K., Cohen J. D. Free and conjugated indole-3-acetic Acid in developing bean seeds. Plant Physiol. 1989 Oct;91(2):775–779. doi: 10.1104/pp.91.2.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bialek K., Meudt W. J., Cohen J. D. Indole-3-acetic Acid (IAA) and IAA Conjugates Applied to Bean Stem Sections: IAA Content and the Growth Response. Plant Physiol. 1983 Sep;73(1):130–134. doi: 10.1104/pp.73.1.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Catalá C., Ostin A., Chamarro J., Sandberg G., Crozier A. Metabolism of Indole-3-Acetic Acid by Pericarp Discs from Immature and Mature Tomato (Lycopersicon esculentum Mill). Plant Physiol. 1992 Nov;100(3):1457–1463. doi: 10.1104/pp.100.3.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davidonis G. H., Hamilton R. H., Mumma R. O. Metabolism of 2,4-dichlorophenoxyacetic Acid in soybean root callus and differentiated soybean root cultures as a function of concentration and tissue age. Plant Physiol. 1978 Jul;62(1):80–83. doi: 10.1104/pp.62.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Norcini J. G., Heuser C. W. Changes in the Level of [C]Indole-3-Acetic Acid and [C]Indoleacetylaspartic Acid during Root Formation in Mung Bean Cuttings. Plant Physiol. 1988 Apr;86(4):1236–1239. doi: 10.1104/pp.86.4.1236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Purves W. K., Hollenberg S. M. Metabolism of Exogenous Indoleacetic Acid to Its Amide Conjugates in Cucumis sativus L. Plant Physiol. 1982 Jul;70(1):283–286. doi: 10.1104/pp.70.1.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Romano C. P., Hein M. B., Klee H. J. Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene of Pseudomonas savastanoi. Genes Dev. 1991 Mar;5(3):438–446. doi: 10.1101/gad.5.3.438. [DOI] [PubMed] [Google Scholar]
- Sonner J. M., Purves W. K. Natural Occurrence of Indole-3-acetylaspartate and Indole-3-acetylglutamate in Cucumber Shoot Tissue. Plant Physiol. 1985 Mar;77(3):784–785. doi: 10.1104/pp.77.3.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ueda M., Bandurski R. S. A Quantitative Estimation of Alkali-labile Indole-3-Acetic Acid Compounds in Dormant and Germinating Maize Kernels. Plant Physiol. 1969 Aug;44(8):1175–1181. doi: 10.1104/pp.44.8.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]