Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Mar;101(3):955–963. doi: 10.1104/pp.101.3.955

Freeze-Induced Membrane Ultrastructural Alterations in Rye (Secale cereale) Leaves.

M S Webb 1, P L Steponkus 1
PMCID: PMC158712  PMID: 12231747

Abstract

Freezing injury in protoplasts isolated from leaves of nonaccli-mated rye (Secale cereale cv Puma) is associated with the formation of the inverted hexagonal (HII) phase. However, in protoplasts from cold-acclimated rye, injury is associated with the occurrence of localized deviations in the fracture plane, a lesion referred to as the "fracture-jump lesion." To establish that these ultrastructural consequences of freezing are not unique to protoplasts, we have examined the manifestations of freezing injury in leaves of non-acclimated and cold-acclimated rye by freeze-fracture electron microscopy. At -10[deg]C, injury in nonacclimated leaves was manifested by the appearance of aparticulate domains in the plasma membrane, aparticulate lamellae subtending the plasma membrane, and by the frequent occurrence of the HII phase. The HII phase was not observed in leaves of cold-acclimated rye frozen to -35[deg]C. Rather, injury was associated with the occurrence of the fracture-jump lesion between the plasma membrane and closely appressed cytoplasmic membranes. Studies of the time dependence of HII phase formation in nonacclimated leaves indicated that freeze-induced dehydration requires longer times in leaves than in isolated protoplasts. These results demonstrate that the freeze-induced formation of the HII phase in nonacclimated rye and the fracture-jump lesion in cold-acclimated rye are not unique to protoplasts but also occur in the leaves from which the protoplasts are isolated.

Full Text

The Full Text of this article is available as a PDF (4.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gordon-Kamm W. J., Steponkus P. L. Lamellar-to-hexagonalII phase transitions in the plasma membrane of isolated protoplasts after freeze-induced dehydration. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6373–6377. doi: 10.1073/pnas.81.20.6373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Uemura M., Steponkus P. L. Effect of cold acclimation on the incidence of two forms of freezing injury in protoplasts isolated from rye leaves. Plant Physiol. 1989 Nov;91(3):1131–1137. doi: 10.1104/pp.91.3.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES