Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Mar;101(3):1047–1053. doi: 10.1104/pp.101.3.1047

High CO2 concentration alleviates the block in photosynthetic electron transport in an ndhB-inactivated mutant of Synechococcus sp. PCC 7942.

E Marco 1, N Ohad 1, R Schwarz 1, J Lieman-Hurwitz 1, C Gabay 1, A Kaplan 1
PMCID: PMC158724  PMID: 8310046

Abstract

The high-concentration CO2-requiring mutant N5 of Synechococcus sp. PCC 7942 was obtained by the insertion of a kanamycin-resistant gene at the EcoRI site, 12.4 kb upstream of rbc. The mutant is unable to accumulate inorganic carbon internally and exhibits very low apparent photosynthetic affinity for inorganic carbon but a photosynthetic Vmax similar to that of the wild type. Sequence and northern analyses showed that the insertion inactivated a gene highly homologous to ndhB, encoding subunit II of NADH dehydrogenase in Synechocystis sp. PCC 6803 (T. Ogawa [1991] Proc Natl Acad Sci USA 88: 4275-4279). When the mutant and the wild-type cells were exposed to 5% CO2 in air, their photosynthetic electron transfer capabilities, as revealed by fluorescence and thermoluminescence measurements, were similar. On the other hand, a significant decrease in variable fluorescence was observed when the mutant (but not the wild-type) cells were exposed to low CO2 under continuous light. The same treatment also resulted in a shift (from 38-27 degrees C) in the temperature at which the maximal thermoluminescence emission signal was obtained in the mutant but not in the wild type. These results may indicate that subunit II of NADH dehydrogenase is essential for the functional operation of the photosynthetic electron transport in Synechococcus under low but not high levels of CO2. We suggest that the inability to accumulate inorganic carbon under air conditions stems from disrupture of electron transport in this mutant.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger S., Ellersiek U., Steinmüller K. Cyanobacteria contain a mitochondrial complex I-homologous NADH-dehydrogenase. FEBS Lett. 1991 Jul 29;286(1-2):129–132. doi: 10.1016/0014-5793(91)80957-5. [DOI] [PubMed] [Google Scholar]
  2. Bédu S., Peltier G., Sarrey F., Joset F. Properties of a Mutant from Synechocystis PCC6803 Resistant to Acetazolamide, an Inhibitor of Carbonic Anhydrase. Plant Physiol. 1990 Aug;93(4):1312–1315. doi: 10.1104/pp.93.4.1312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Friedberg D., Kaplan A., Ariel R., Kessel M., Seijffers J. The 5'-flanking region of the gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is crucial for growth of the cyanobacterium Synechococcus sp. strain PCC 7942 at the level of CO2 in air. J Bacteriol. 1989 Nov;171(11):6069–6076. doi: 10.1128/jb.171.11.6069-6076.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Green L. S., Laudenbach D. E., Grossman A. R. A region of a cyanobacterial genome required for sulfate transport. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1949–1953. doi: 10.1073/pnas.86.6.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kaplan A., Schwarz R., Lieman-Hurwitz J., Reinhold L. Physiological and molecular aspects of the inorganic carbon-concentrating mechanism in cyanobacteria. Plant Physiol. 1991 Nov;97(3):851–855. doi: 10.1104/pp.97.3.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kaplan A., Zenvirth D., Marcus Y., Omata T., Ogawa T. Energization and activation of inorganic carbon uptake by light in cyanobacteria. Plant Physiol. 1987 Jun;84(2):210–213. doi: 10.1104/pp.84.2.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Miller A. G., Espie G. S., Canvin D. T. Active Transport of Inorganic Carbon Increases the Rate of O(2) Photoreduction by the Cyanobacterium Synechococcus UTEX 625. Plant Physiol. 1988 Sep;88(1):6–9. doi: 10.1104/pp.88.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ogawa T. A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC6803. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4275–4279. doi: 10.1073/pnas.88.10.4275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ogawa T. Identification and Characterization of the ictA/ndhL Gene Product Essential to Inorganic Carbon Transport of Synechocystis PCC6803. Plant Physiol. 1992 Aug;99(4):1604–1608. doi: 10.1104/pp.99.4.1604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ogawa T., Kaneda T., Omata T. A Mutant of Synechococcus PCC7942 Incapable of Adapting to Low CO(2) Concentration. Plant Physiol. 1987 Jul;84(3):711–715. doi: 10.1104/pp.84.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ohad N., Hirschberg J. Mutations in the D1 subunit of photosystem II distinguish between quinone and herbicide binding sites. Plant Cell. 1992 Mar;4(3):273–282. doi: 10.1105/tpc.4.3.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Price G. D., Badger M. R. Isolation and Characterization of High CO(2)-Requiring-Mutants of the Cyanobacterium Synechococcus PCC7942 : Two Phenotypes that Accumulate Inorganic Carbon but Are Apparently Unable to Generate CO(2) within the Carboxysome. Plant Physiol. 1989 Oct;91(2):514–525. doi: 10.1104/pp.91.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Price G. D., Coleman J. R., Badger M. R. Association of Carbonic Anhydrase Activity with Carboxysomes Isolated from the Cyanobacterium Synechococcus PCC7942. Plant Physiol. 1992 Oct;100(2):784–793. doi: 10.1104/pp.100.2.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schwarz R., Friedberg D., Kaplan A. Is there a role for the 42 kilodalton polypeptide in inorganic carbon uptake by cyanobacteria? Plant Physiol. 1988 Oct;88(2):284–288. doi: 10.1104/pp.88.2.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schwarz R., Lieman-Hurwitz J., Hassidim M., Kaplan A. Phenotypic Complementation of High CO(2)-Requiring Mutants of the Cyanobacterium Synechococcus sp. Strain PCC 7942 by Inosine 5'-Monophosphate. Plant Physiol. 1992 Dec;100(4):1987–1993. doi: 10.1104/pp.100.4.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES