Abstract
A method was developed to detect [alpha]-amylase gene expression and [alpha]-amylase secretion from individual barley (Hordeum vulgare L. cv Himalaya) aleurone protoplasts. Protoplasts are incubated in liquid media with or without hormones and embedded in a thin film of agarose and starch, where they remain viable for up to 24 h. [alpha]-Amylase secreted by individual protoplasts digests the starch, and starch hydrolysis is visualized after 45 min by staining the preparation with I2KI. After I2KI staining, secreting protoplasts are surrounded by a clear, starch-free halo visible by light microscopy. The formation of starch-free halos is dependent on the synthesis and secretion of [alpha]-amylase and is not caused by carry-over of preformed enzyme from incubation media. Treating protoplasts with inhibitors of protein synthesis or exposing them to anaerobic conditions for 2 h before embedding them in agarose prevents the formation of halos. When [alpha]-amylase secretion is observed by counting the percentage of secreting protoplasts, the data are comparable to that obtained by measuring [alpha]-amylase secretion from a population of cells. The response of individual protoplasts to gibberellic acid (GA3) and abscisic acid measured by the thin-film method is almost identical to the response of populations of protoplasts to these hormones, validating the utility of this method. Although not generally practical for quantifying secretion, the thin-film method is uniquely useful in distinguishing secreting from nonsecreting protoplasts. In none of our experiments did more than 60% of the protoplasts secrete [alpha]-amylase when exposed to GA3, even though more than 95% of the protoplasts in the preparations were viable. Similar results were obtained when the response to GA3 was assayed at the level of gene transcription by visualizing the transient expression of a plasmid containing the promoter from [alpha]-amylase fused to the reporter gene glucuronidase in single protoplasts. The thin-film secretion assay also revealed that the response of a population of protoplasts to GA3 was not uniform with time. The effect of GA3 treatment was to gradually increase the percentage of responding protoplasts up to a maximum of 50 to 60%. Abscisic acid, which inhibits [alpha]-amylase secretion by GA3-treated protoplasts, reduced the proportion of protoplasts that secrete the enzyme.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bush D. S., Jones R. L. Measuring intracellular ca levels in plant cells using the fluorescent probes, indo-1 and fura-2 : progress and prospects. Plant Physiol. 1990 Jul;93(3):841–845. doi: 10.1104/pp.93.3.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chrispeels M. J., Varner J. E. Gibberellic Acid-enhanced synthesis and release of alpha-amylase and ribonuclease by isolated barley and aleurone layers. Plant Physiol. 1967 Mar;42(3):398–406. doi: 10.1104/pp.42.3.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Filner P., Varner J. E. A test for de novo synthesis of enzymes: density labeling with H2O18 of barley alpha-amylase induced by gibberellic acid. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1520–1526. doi: 10.1073/pnas.58.4.1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilroy S., Fricker M. D., Read N. D., Trewavas A. J. Role of Calcium in Signal Transduction of Commelina Guard Cells. Plant Cell. 1991 Apr;3(4):333–344. doi: 10.1105/tpc.3.4.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilroy S., Jones R. L. Gibberellic acid and abscisic acid coordinately regulate cytoplasmic calcium and secretory activity in barley aleurone protoplasts. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3591–3595. doi: 10.1073/pnas.89.8.3591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gopalakrishnan B., Sonthayanon B., Rahmatullah R., Muthukrishnan S. Barley aleurone layer cell protoplasts as a transient expression system. Plant Mol Biol. 1991 Mar;16(3):463–467. doi: 10.1007/BF00023996. [DOI] [PubMed] [Google Scholar]
- Hillmer S., Bush D. S., Robinson D. G., Zingen-Sell I., Jones R. L. Barley aleurone protoplasts are structurally and functionally similar to the walled cells of aleurone layers. Eur J Cell Biol. 1990 Jun;52(1):169–173. [PubMed] [Google Scholar]
- Moll B. A., Jones R. L. Alpha-amylase secretion by single barley aleurone layers. Plant Physiol. 1982 Oct;70(4):1149–1155. doi: 10.1104/pp.70.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silvanovich M. P., Hill R. D. Affinity chromatography of cereal alpha-amylase. Anal Biochem. 1976 Jun;73(2):430–433. doi: 10.1016/0003-2697(76)90191-3. [DOI] [PubMed] [Google Scholar]
- Tsien R. W., Tsien R. Y. Calcium channels, stores, and oscillations. Annu Rev Cell Biol. 1990;6:715–760. doi: 10.1146/annurev.cb.06.110190.003435. [DOI] [PubMed] [Google Scholar]
- Zwar J. A., Hooley R. Hormonal Regulation of alpha-Amylase Gene Transcription in Wild Oat (Avena fatua L.) Aleurone Protoplasts. Plant Physiol. 1986 Feb;80(2):459–463. doi: 10.1104/pp.80.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]