Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 May;102(1):303–312. doi: 10.1104/pp.102.1.303

Characterization of a gene that is expressed early in somatic embryogenesis of Daucus carota.

E S Wurtele 1, H Wang 1, S Durgerian 1, B J Nikolau 1, T H Ulrich 1
PMCID: PMC158776  PMID: 8108498

Abstract

The EMB-1 mRNA of carrot (Daucus carota) was isolated as an embryo abundant cDNA clone (T.H. Ulrich, E.S. Wurtele, B.J. Nikolau [1990] Nucleic Acids Res 18: 2826). Northern analyses of RNA isolated from embryos, cultured cells, and a variety of vegetative organs indicate that the EMB-1 mRNA specifically accumulates in embryos, beginning at the early stages of embryo development. In situ hybridization with both zygotic and somatic embryos show that the EMB-1 mRNA begins to accumulate at low levels throughout globular embryos. Accumulation of EMB-1 mRNA increases and becomes more localized as embryos mature; in torpedo embryos, EMB-1 mRNA preferentially accumulates in the meristematic regions, particularly the procambium. The similarity in distribution of EMB-1 mRNA in both zygotic and somatic embryos indicates that much of the spatial pattern of expression of the emb-1 gene is dependent on the developmental program of the carrot embryo and does not require maternal or endosperm factors. The EMB-1 protein (relative molecular weight 9910) is a very hydrophilic protein that is a member of a class of highly conserved proteins (typified also by the Em protein of wheat and the Lea D19 protein of cotton) that may be ubiquitous among angiosperm embryos but whose functions are as yet unknown. The carrot genome appears to contain one or two copies of the emb-1 gene. A 1313-base pair DNA fragment of the carrot genome containing the emb-1 gene was isolated and sequenced. The gene is interrupted by a single intron of 99 base pairs. Primer extension experiments identify two EMB-1 mRNAs, differing by 6 bases at their 5' ends that are transcribed from this gene.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apuya N. R., Zimmerman J. L. Heat Shock Gene Expression Is Controlled Primarily at the Translational Level in Carrot Cells and Somatic Embryos. Plant Cell. 1992 Jun;4(6):657–665. doi: 10.1105/tpc.4.6.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berry J. O., Nikolau B. J., Carr J. P., Klessig D. F. Transcriptional and post-transcriptional regulation of ribulose 1,5-bisphosphate carboxylase gene expression in light- and dark-grown amaranth cotyledons. Mol Cell Biol. 1985 Sep;5(9):2238–2246. doi: 10.1128/mcb.5.9.2238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Franz G., Hatzopoulos P., Jones T. J., Krauss M., Sung Z. R. Molecular and genetic analysis of an embryonic gene, DC 8, from Daucus carota L. Mol Gen Genet. 1989 Jul;218(1):143–151. doi: 10.1007/BF00330577. [DOI] [PubMed] [Google Scholar]
  4. Guiltinan M. J., Marcotte W. R., Jr, Quatrano R. S. A plant leucine zipper protein that recognizes an abscisic acid response element. Science. 1990 Oct 12;250(4978):267–271. doi: 10.1126/science.2145628. [DOI] [PubMed] [Google Scholar]
  5. Hughes D. W., Galau G. A. Developmental and environmental induction of Lea and LeaA mRNAs and the postabscission program during embryo culture. Plant Cell. 1991 Jun;3(6):605–618. doi: 10.1105/tpc.3.6.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Joshi C. P. An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res. 1987 Aug 25;15(16):6643–6653. doi: 10.1093/nar/15.16.6643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Keller G. L., Nikolau B. J., Ulrich T. H., Wurtele E. S. Comparison of Starch and ADP-Glucose Pyrophosphorylase Levels in Nonembryogenic Cells and Developing Embryos from Induced Carrot Cultures. Plant Physiol. 1988 Feb;86(2):451–456. doi: 10.1104/pp.86.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Litts J. C., Colwell G. W., Chakerian R. L., Quatrano R. S. Sequence analysis of a functional member of the Em gene family from wheat. DNA Seq. 1991;1(4):263–274. doi: 10.3109/10425179109020781. [DOI] [PubMed] [Google Scholar]
  10. Litts J. C., Colwell G. W., Chakerian R. L., Quatrano R. S. The nucleotide sequence of a cDNA clone encoding the wheat Em protein. Nucleic Acids Res. 1987 Apr 24;15(8):3607–3618. doi: 10.1093/nar/15.8.3607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Proudfoot N. J., Brownlee G. G. 3' non-coding region sequences in eukaryotic messenger RNA. Nature. 1976 Sep 16;263(5574):211–214. doi: 10.1038/263211a0. [DOI] [PubMed] [Google Scholar]
  12. Raynal M., Depigny D., Cooke R., Delseny M. Characterization of a Radish Nuclear Gene Expressed during Late Seed Maturation. Plant Physiol. 1989 Nov;91(3):829–836. doi: 10.1104/pp.91.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Thomas P. S. Hybridization of denatured RNA transferred or dotted nitrocellulose paper. Methods Enzymol. 1983;100:255–266. doi: 10.1016/0076-6879(83)00060-9. [DOI] [PubMed] [Google Scholar]
  14. Ulrich T. U., Wurtele E. S., Nikolau B. J. Sequence of EMB-1, an mRNA accumulating specifically in embryos of carrot. Nucleic Acids Res. 1990 May 11;18(9):2826–2826. doi: 10.1093/nar/18.9.2826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Vivekananda J., Drew M. C., Thomas T. L. Hormonal and Environmental Regulation of the Carrot lea-Class Gene Dc3. Plant Physiol. 1992 Oct;100(2):576–581. doi: 10.1104/pp.100.2.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wiebauer K., Herrero J. J., Filipowicz W. Nuclear pre-mRNA processing in plants: distinct modes of 3'-splice-site selection in plants and animals. Mol Cell Biol. 1988 May;8(5):2042–2051. doi: 10.1128/mcb.8.5.2042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wolfe K. H., Gouy M., Yang Y. W., Sharp P. M., Li W. H. Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6201–6205. doi: 10.1073/pnas.86.16.6201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES