Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Jun;102(2):529–536. doi: 10.1104/pp.102.2.529

Identification of the uridine-binding domain of sucrose-phosphate synthase. Expression of a region of the protein that photoaffinity labels with 5-azidouridine diphosphate-glucose.

M E Salvucci 1, R R Klein 1
PMCID: PMC158808  PMID: 8108511

Abstract

The uridine diphosphate-glucose (UDP-Glc) binding domain of sucrose-phosphate synthase (SPS) was identified by overexpressing part of the gene from spinach (Spinacia oleracea). Degenerate oligonucleotide primers corresponding to two tryptic peptides common to both the full-length 120-kD SPS subunit and an 82-kD form that photoaffinity labeled with 5-azidouridine diphosphate-glucose (5-N3UDP-Glc) were used in a polymerase chain reaction to isolate a partial cDNA clone. Comparison of the deduced amino acid sequence of spinach SPS with the sequences of potato sucrose synthase showed that the partial cDNA included one region that was highly conserved between the proteins. Expression of the partial cDNA clone of SPS in Escherichia coli produced a 26-kD fusion protein that photoaffinity labeled with 5-N3UDP-Glc. Photoaffinity labeling of the 26-kD fusion protein was specific, indicating that this portion of the SPS protein harbors the UDP-Glc-binding domain. Isolation of a modified peptide from the photolabeled protein provided tentative identification of amino acid residues that make up the uridine-binding domain of SPS.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Bruneau J. M., Worrell A. C., Cambou B., Lando D., Voelker T. A. Sucrose phosphate synthase, a key enzyme for sucrose biosynthesis in plants: protein purification from corn leaves and immunological detection. Plant Physiol. 1991 Jun;96(2):473–478. doi: 10.1104/pp.96.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Drake R. R., Jr, Evans R. K., Wolf M. J., Haley B. E. Synthesis and properties of 5-azido-UDP-glucose. Development of photoaffinity probes for nucleotide diphosphate sugar binding sites. J Biol Chem. 1989 Jul 15;264(20):11928–11933. [PubMed] [Google Scholar]
  4. Higgins D. G., Sharp P. M. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci. 1989 Apr;5(2):151–153. doi: 10.1093/bioinformatics/5.2.151. [DOI] [PubMed] [Google Scholar]
  5. Klein R. R., Salvucci M. E. Photoaffinity Labeling of Mature and Precursor Forms of the Small Subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase after Expression in Escherichia coli. Plant Physiol. 1992 Feb;98(2):546–553. doi: 10.1104/pp.98.2.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Müller C. W., Schulz G. E. Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 A resolution. A model for a catalytic transition state. J Mol Biol. 1992 Mar 5;224(1):159–177. doi: 10.1016/0022-2836(92)90582-5. [DOI] [PubMed] [Google Scholar]
  7. Salanoubat M., Belliard G. Molecular cloning and sequencing of sucrose synthase cDNA from potato (Solanum tuberosum L.): preliminary characterization of sucrose synthase mRNA distribution. Gene. 1987;60(1):47–56. doi: 10.1016/0378-1119(87)90212-5. [DOI] [PubMed] [Google Scholar]
  8. Salvucci M. E., Chavan A. J., Haley B. E. Identification of peptides from the adenine binding domains of ATP and AMP in adenylate kinase: isolation of photoaffinity-labeled peptides by metal chelate chromatography. Biochemistry. 1992 May 12;31(18):4479–4487. doi: 10.1021/bi00133a014. [DOI] [PubMed] [Google Scholar]
  9. Walker J. L., Huber S. C. Purification and preliminary characterization of sucrose-phosphate synthase using monoclonal antibodies. Plant Physiol. 1989 Feb;89(2):518–524. doi: 10.1104/pp.89.2.518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wise J. G., Hicke B. J., Boyer P. D. Catalytic and noncatalytic nucleotide binding sites of the Escherichia coli F1 ATPase. Amino acid sequences of beta-subunit tryptic peptides labeled with 2-azido-ATP. FEBS Lett. 1987 Nov 2;223(2):395–401. doi: 10.1016/0014-5793(87)80326-5. [DOI] [PubMed] [Google Scholar]
  11. Worrell A. C., Bruneau J. M., Summerfelt K., Boersig M., Voelker T. A. Expression of a maize sucrose phosphate synthase in tomato alters leaf carbohydrate partitioning. Plant Cell. 1991 Oct;3(10):1121–1130. doi: 10.1105/tpc.3.10.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES