Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Jun;102(2):573–578. doi: 10.1104/pp.102.2.573

The Use of Fura-2 Fluorescence to Monitor the Movement of Free Calcium Ions into the Matrix of Plant Mitochondria (Pisum sativum and Helianthus tuberosus).

M Zottini 1, D Zannoni 1
PMCID: PMC158814  PMID: 12231846

Abstract

Purified mitochondria isolated from pea (Pisum sativum L. cv Alaska) stems and Jerusalem artichoke (Helianthus tuberosus L. cv OB1) tubers were loaded with the acetoxymethyl ester of the fluorescent Ca2+ indicator fura-2. This made possible the continuous monitoring of free [Ca2+] in the matrix ([Ca2+]m) without affecting the apparent viability of the mitochondria. Pea stem mitochondria contained an initial [Ca2+]m of approximately 60 to 100 nM, whereas [Ca2+]m was severalfold higher (400-600 nM) in mitochondria of Jerusalem artichoke tubers. At low extramitochondrial Ca2+ concentrations ([greater than or equal to]100 nM), there was an energy-dependent membrane potential increase in [Ca2+]m; the final [Ca2+]m was phosphate-dependent in Jerusalem artichoke but was phosphate-independent in pea stem mitochondria. The data presented indicate that (a) there is no absolute requirement for phosphate in Ca2+ uptake; (b) plant mitochondria can accumulate external free Ca2+ by means of an electrophoretic Ca2+ uniporter with an apparent affinity for Ca2+ (Km approximately 150 nM) that is severalfold lower than that measured by conventional methods (isotopes and Ca2+-sensitive electrodes); and (c) [Ca2+]m is within the regulatory range of mammalian intramitochondrial dehydrogenases.

Full Text

The Full Text of this article is available as a PDF (621.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerman K. E., Moore A. L. Phosphate dependent, ruthenium red insensitive CA2+ uptake in mung bean mitochondria. Biochem Biophys Res Commun. 1983 Aug 12;114(3):1176–1181. doi: 10.1016/0006-291x(83)90686-1. [DOI] [PubMed] [Google Scholar]
  2. Assimacopoulos-Jeannet F., McCormack J. G., Jeanrenaud B. Vasopressin and/or glucagon rapidly increases mitochondrial calcium and oxidative enzyme activities in the perfused rat liver. J Biol Chem. 1986 Jul 5;261(19):8799–8804. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Bush D. S., Jones R. L. Measuring intracellular ca levels in plant cells using the fluorescent probes, indo-1 and fura-2 : progress and prospects. Plant Physiol. 1990 Jul;93(3):841–845. doi: 10.1104/pp.93.3.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carnieri E. G., Martins I. S., Vercesi A. E. The mechanism and biological role of calcium transport by plant mitochondria. Braz J Med Biol Res. 1987;20(5):635–638. [PubMed] [Google Scholar]
  6. Chen C. H., Lehninger A. L. Ca 2+ transport activity in mitochondria from some plant tissues. Arch Biochem Biophys. 1973 Jul;157(1):183–196. doi: 10.1016/0003-9861(73)90404-9. [DOI] [PubMed] [Google Scholar]
  7. Cobbold P. H., Rink T. J. Fluorescence and bioluminescence measurement of cytoplasmic free calcium. Biochem J. 1987 Dec 1;248(2):313–328. doi: 10.1042/bj2480313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davis M. H., Altschuld R. A., Jung D. W., Brierley G. P. Estimation of intramitochondrial pCa and pH by fura-2 and 2,7 biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) fluorescence. Biochem Biophys Res Commun. 1987 Nov 30;149(1):40–45. doi: 10.1016/0006-291x(87)91602-0. [DOI] [PubMed] [Google Scholar]
  9. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  10. Hansford R. G. Relation between mitochondrial calcium transport and control of energy metabolism. Rev Physiol Biochem Pharmacol. 1985;102:1–72. doi: 10.1007/BFb0034084. [DOI] [PubMed] [Google Scholar]
  11. Lukács G. L., Kapus A. Measurement of the matrix free Ca2+ concentration in heart mitochondria by entrapped fura-2 and quin2. Biochem J. 1987 Dec 1;248(2):609–613. doi: 10.1042/bj2480609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McCormack J. G., Browne H. M., Dawes N. J. Studies on mitochondrial Ca2+-transport and matrix Ca2+ using fura-2-loaded rat heart mitochondria. Biochim Biophys Acta. 1989 Mar 23;973(3):420–427. doi: 10.1016/s0005-2728(89)80384-6. [DOI] [PubMed] [Google Scholar]
  13. McCormack J. G., Denton R. M. Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat heart. Evidence from studies with isolated mitochondria that adrenaline activates the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes by increasing the intramitochondrial concentration of Ca2+. Biochem J. 1984 Feb 15;218(1):235–247. doi: 10.1042/bj2180235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Puskin J. S., Gunter T. E., Gunter K. K., Russell P. R. Evidence for more than one Ca2+ transport mechanism in mitochondria. Biochemistry. 1976 Aug 24;15(17):3834–3842. doi: 10.1021/bi00662a029. [DOI] [PubMed] [Google Scholar]
  15. Rasmusson A. G., Møller I. M. Effect of calcium ions and inhibitors on internal NAD(P)H dehydrogenases in plant mitochondria. Eur J Biochem. 1991 Dec 5;202(2):617–623. doi: 10.1111/j.1432-1033.1991.tb16415.x. [DOI] [PubMed] [Google Scholar]
  16. Reinhart P. H., van de Pol E., Taylor W. M., Bygrave F. L. An assessment of the calcium content of rat liver mitochondria in vivo. Biochem J. 1984 Mar 1;218(2):415–420. doi: 10.1042/bj2180415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rugolo M., Zannoni D. Oxidation of External NAD(P)H by Jerusalem Artichoke (Helianthus tuberosus) Mitochondria : A Kinetic and Inhibitor Study. Plant Physiol. 1992 Jul;99(3):1037–1043. doi: 10.1104/pp.99.3.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sage S. O., Merritt J. E., Hallam T. J., Rink T. J. Receptor-mediated calcium entry in fura-2-loaded human platelets stimulated with ADP and thrombin. Dual-wavelengths studies with Mn2+. Biochem J. 1989 Mar 15;258(3):923–926. doi: 10.1042/bj2580923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Silva M. A., Carnieri E. G., Vercesi A. E. Calcium transport by corn mitochondria : evaluation of the role of phosphate. Plant Physiol. 1992 Feb;98(2):452–457. doi: 10.1104/pp.98.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Somlyo A. P., Bond M., Somlyo A. V. Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo. Nature. 1985 Apr 18;314(6012):622–625. doi: 10.1038/314622a0. [DOI] [PubMed] [Google Scholar]
  21. Tsien R. Y. A non-disruptive technique for loading calcium buffers and indicators into cells. Nature. 1981 Apr 9;290(5806):527–528. doi: 10.1038/290527a0. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES