Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Jun;102(2):579–585. doi: 10.1104/pp.102.2.579

Oxidation of External NAD(P)H by Mitochondria from Taproots and Tissue Cultures of Sugar Beet (Beta vulgaris).

M Zottini 1, G Mandolino 1, D Zannoni 1
PMCID: PMC158815  PMID: 12231847

Abstract

The present study compares the exogenous NAD(P)H oxidation and the membrane potential ([delta][psi]) generated in mitochondria isolated from different tissues of an important agricultural crop, sugar beet (Beta vulgaris}. We observed that mitochondria from taproots, cold-stored taproots, and in vitro-grown tissue cultures contain a functional NADH dehydrogenase, whereas only those isolated from tissue cultures displayed a functional NAD(P)H dehydrogenase. It is interesting that the NADH-dependent [delta][psi] of mitochondria from cold-stored taproots and from tissue cultures was not affected by free Ca2+ ions, whereas free Ca2+ was required for the mitochondrial NADPH oxidation by in vitro-grown cells and cytosolic NADH oxidation by mitochondria from fresh taproots. A tentative model accounting for the different response to Ca2+ ions of the NADH dehydrogenase in mitochondria from cold-stored taproots and tissue cultures of B. vulgaris is discussed.

Full Text

The Full Text of this article is available as a PDF (682.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerman K. E., Wikström M. K. Safranine as a probe of the mitochondrial membrane potential. FEBS Lett. 1976 Oct 1;68(2):191–197. doi: 10.1016/0014-5793(76)80434-6. [DOI] [PubMed] [Google Scholar]
  2. Arron G. P., Edwards G. E. Oxidation of reduced nicotinamide adenine dinucleotide phosphate by plant mitochondria. Can J Biochem. 1979 Dec;57(12):1392–1399. doi: 10.1139/o79-185. [DOI] [PubMed] [Google Scholar]
  3. Bers D. M. A simple method for the accurate determination of free [Ca] in Ca-EGTA solutions. Am J Physiol. 1982 May;242(5):C404–C408. doi: 10.1152/ajpcell.1982.242.5.C404. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Chauveau M., Lance C. Purification and Partial Characterization of Two Soluble NAD(P)H Dehydrogenases from Arum maculatum Mitochondria. Plant Physiol. 1991 Mar;95(3):934–942. doi: 10.1104/pp.95.3.934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cook N. D., Cammack R. Purification and characterization of the rotenone-insensitive NADH dehydrogenase of mitochondria from Arum maculatum. Eur J Biochem. 1984 Jun 15;141(3):573–577. doi: 10.1111/j.1432-1033.1984.tb08231.x. [DOI] [PubMed] [Google Scholar]
  7. Fredlund K. M., Rasmusson A. G., Møller I. M. Oxidation of External NAD(P)H by Purified Mitochondria from Fresh and Aged Red Beetroots (Beta vulgaris L.). Plant Physiol. 1991 Sep;97(1):99–103. doi: 10.1104/pp.97.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Holden M. J., Sze H. Dissipation of the Membrane Potential in Susceptible Corn Mitochondria by the Toxin of Helminthosporium maydis, Race T, and Toxin Analogs. Plant Physiol. 1987 Jul;84(3):670–676. doi: 10.1104/pp.84.3.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Luethy M. H., Hayes M. K., Elthon T. E. Partial Purification and Characterization of Three NAD(P)H Dehydrogenases from Beta vulgaris Mitochondria. Plant Physiol. 1991 Dec;97(4):1317–1322. doi: 10.1104/pp.97.4.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Moore A. L., Akerman K. E. Ca2+ stimulation of the external NADH dehydrogenase in Jerusalem artichoke (Helianthus tuberosum) mitochondria. Biochem Biophys Res Commun. 1982 Nov 30;109(2):513–517. doi: 10.1016/0006-291x(82)91751-x. [DOI] [PubMed] [Google Scholar]
  11. Moore A. L., Bonner W. D. Measurements of membrane potentials in plant mitochondria with the safranine method. Plant Physiol. 1982 Nov;70(5):1271–1276. doi: 10.1104/pp.70.5.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Møller I. M., Johnston S. P., Palmer J. M. A specific role for Ca2+ in the oxidation of exogenous NADH by Jerusalem-artichoke (Helianthus tuberosus) mitochondria. Biochem J. 1981 Feb 15;194(2):487–495. doi: 10.1042/bj1940487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nash D., Wiskich J. T. Properties of substantially chlorophyll-free pea leaf mitochondria prepared by sucrose density gradient separation. Plant Physiol. 1983 Mar;71(3):627–634. doi: 10.1104/pp.71.3.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rugolo M., Zannoni D. Oxidation of External NAD(P)H by Jerusalem Artichoke (Helianthus tuberosus) Mitochondria : A Kinetic and Inhibitor Study. Plant Physiol. 1992 Jul;99(3):1037–1043. doi: 10.1104/pp.99.3.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES