Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Jun;102(2):629–638. doi: 10.1104/pp.102.2.629

An in Vivo Nuclear Magnetic Resonance Investigation of Ion Transport in Maize (Zea mays) and Spartina anglica Roots during Exposure to High Salt Concentrations.

C M Spickett 1, N Smirnoff 1, R G Ratcliffe 1
PMCID: PMC158822  PMID: 12231853

Abstract

The response of maize (Zea mays L.) and Spartina anglica root tips to exposure to sodium chloride concentrations in the range 0 to 500 mM was investigated using 23Na and 31P nuclear magnetic resonance spectroscopy (NMR). Changes in the chemical shift of the pH-dependent 31P-NMR signals from the cytoplasmic and vacuolar orthophosphate pools were correlated with the uptake of sodium, and after allowing for a number of complicating factors we concluded that these chemical shift changes indicated the occurrence of a small cytoplasmic alkalinization (0.1-0.2 pH units) and a larger vacuolar alkalinization (0.6 pH units) in maize root tips exposed to salt concentrations greater than 200 mM. The data were interpreted in terms of the ion transport processes that may be important during salt stress, and we concluded that the vacuolar alkalinization provided evidence for the operation of a tonoplast Na+/H+-antiport with an activity that exceeded the activity of the tonoplast H+ pumps. The intracellular pH values stabilized during prolonged treatment with high salt concentrations, and this observation was linked to the recent demonstration (Y. Nakamura, K. Kasamo, N. Shimosato, M. Sakata, E. Ohta [1992] Plant Cell Physiol 33: 139-149) of the salt-induced activation of the tonoplast H+- ATPase. Sodium vanadate, an inhibitor of the plasmalemma H+- ATPase, stimulated the net uptake of sodium by maize root tips, and this was interpreted in terms of a reduction in active sodium efflux from the tissue. S. anglica root tips accumulated sodium more slowly than did maize, with no change in cytoplasmic pH and a relatively small change (0.3 pH units) in vacuolar pH, and it appears that salt tolerance in Spartina is based in part on its ability to prevent the net influx of sodium chloride.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blumwald E., Cragoe E. J., Poole R. J. Inhibition of na/h antiport activity in sugar beet tonoplast by analogs of amiloride. Plant Physiol. 1987 Sep;85(1):30–33. doi: 10.1104/pp.85.1.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blumwald E., Poole R. J. Salt tolerance in suspension cultures of sugar beet : induction of na/h antiport activity at the tonoplast by growth in salt. Plant Physiol. 1987 Apr;83(4):884–887. doi: 10.1104/pp.83.4.884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Braun Y., Hassidim M., Lerner H. R., Reinhold L. Evidence for a Na/H Antiporter in Membrane Vesicles Isolated from Roots of the Halophyte Atriplex nummularia. Plant Physiol. 1988 May;87(1):104–108. doi: 10.1104/pp.87.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Braun Y., Hassidim M., Lerner H. R., Reinhold L. Studies on H-Translocating ATPases in Plants of Varying Resistance to Salinity : I. Salinity during Growth Modulates the Proton Pump in the Halophyte Atriplex nummularia. Plant Physiol. 1986 Aug;81(4):1050–1056. doi: 10.1104/pp.81.4.1050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fan T. W., Higashi R. M., Norlyn J., Epstein E. In vivo 23Na and 31P NMR measurement of a tonoplast Na+/H+ exchange process and its characteristics in two barley cultivars. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9856–9860. doi: 10.1073/pnas.86.24.9856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Garbarino J., Dupont F. M. NaCl Induces a Na/H Antiport in Tonoplast Vesicles from Barley Roots. Plant Physiol. 1988 Jan;86(1):231–236. doi: 10.1104/pp.86.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gerasimowicz W. V., Tu S. I., Pfeffer P. E. Energy Facilitated Na Uptake in Excised Corn Roots via P and Na NMR. Plant Physiol. 1986 Jul;81(3):925–928. doi: 10.1104/pp.81.3.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Guern J., Mathieu Y., Kurkdjian A., Manigault P., Manigault J., Gillet B., Beloeil J. C., Lallemand J. Y. Regulation of Vacuolar pH of Plant Cells: II. A P NMR Study of the Modifications of Vacuolar pH in Isolated Vacuoles Induced by Proton Pumping and Cation/H Exchanges. Plant Physiol. 1989 Jan;89(1):27–36. doi: 10.1104/pp.89.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Katsuhara M., Kuchitsu K., Takeshige K., Tazawa M. Salt Stress-Induced Cytoplasmic Acidification and Vacuolar Alkalization in Nitellopsis obtusa Cells : In VivoP-Nuclear Magnetic Resonance Study. Plant Physiol. 1989 Jul;90(3):1102–1107. doi: 10.1104/pp.90.3.1102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Katz A., Bental M., Degani H., Avron M. In Vivo pH Regulation by a Na/H Antiporter in the Halotolerant Alga Dunaliella salina. Plant Physiol. 1991 May;96(1):110–115. doi: 10.1104/pp.96.1.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Katz A., Pick U., Avron M. Characterization and reconstitution of the Na+/H+ antiporter from the plasma membrane of the halotolerant alga Dunaliella. Biochim Biophys Acta. 1989 Jul 24;983(1):9–14. doi: 10.1016/0005-2736(89)90373-8. [DOI] [PubMed] [Google Scholar]
  13. Maathuis F. J., Prins H. B. Patch clamp studies on root cell vacuoles of a salt-tolerant and a salt-sensitive plantago species : regulation of channel activity by salt stress. Plant Physiol. 1990 Jan;92(1):23–28. doi: 10.1104/pp.92.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Matoh T., Ishikawa T., Takahashi E. Collapse of ATP-Induced pH Gradient by Sodium Ions in Microsomal Membrane Vesicles Prepared from Atriplex gmelini Leaves: Possibility of Na/H Antiport. Plant Physiol. 1989 Jan;89(1):180–183. doi: 10.1104/pp.89.1.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Reuveni M., Bennett A. B., Bressan R. A., Hasegawa P. M. Enhanced H Transport Capacity and ATP Hydrolysis Activity of the Tonoplast H-ATPase after NaCl Adaptation. Plant Physiol. 1990 Oct;94(2):524–530. doi: 10.1104/pp.94.2.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reuveni M., Colombo R., Lerner H. R., Pradet A., Poljakoff-Mayber A. Osmotically induced proton extrusion from carrot cells in suspension culture. Plant Physiol. 1987 Oct;85(2):383–388. doi: 10.1104/pp.85.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Roby C., Martin J. B., Bligny R., Douce R. Biochemical changes during sucrose deprivation in higher plant cells. Phosphorus-31 nuclear magnetic resonance studies. J Biol Chem. 1987 Apr 15;262(11):5000–5007. [PubMed] [Google Scholar]
  18. Spickett C. M., Smirnoff N., Ratcliffe R. G. Metabolic Response of Maize Roots to Hyperosmotic Shock : An in VivoP Nuclear Magnetic Resonance Study. Plant Physiol. 1992 Jul;99(3):856–863. doi: 10.1104/pp.99.3.856. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES