Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Jun;102(2):651–661. doi: 10.1104/pp.102.2.651

A Plasma Membrane-Type Ca2+-ATPase of 120 Kilodaltons on the Endoplasmic Reticulum from Carrot (Daucus carota) Cells (Properties of the Phosphorylated Intermediate).

F H Chen 1, D M Ratterman 1, H Sze 1
PMCID: PMC158825  PMID: 12231855

Abstract

Cytosolic Ca2+ levels are regulated in part by Ca2+-pumping ATPases that export Ca2+ from the cytoplasm; however, the types and properties of Ca2+ pumps in plants are not well understood. We have characterized the kinetic properties of a 120-kD phosphoenzyme (PE) intermediate formed during the reaction cycle of a Ca2+-ATPase from suspension-cultured carrot (Daucus carota) cells. Only one Ca2+-dependent phosphoprotein was formed when carrot membrane vesicles were incubated with [[gamma]-32P]ATP (W.L. Hsieh, W.S. Pierce, and H. Sze [1991] Plant Physiol 97: 1535-1544). Formation of this 120-kD phosphoprotein was inhibited by vanadate, enhanced by La3+, and decreased by hydroxylamine, confirming its identification as an intermediate of a phosphorylated-type Ca2+-translocating ATPase. The 120-kD Ca2+-ATPase was most abundant in endoplasmic reticulum-enriched fractions, in which the Ca2+-ATPase was estimated to be 0.1% of membrane protein. Direct quantitation of Ca2+-dependent phosphoprotein was used to examine the kinetics of PE formation. PE formation exhibited a Km for Ca2+ of 1 to 2 [mu]M and a Km for ATP of 67 nM. Relative affinities of substrates, determined by competition experiments, were 0.075 [mu]M for ATP, 1 [mu]M for ADP, 100 [mu]M for ITP, and 250 [mu]M for GTP. Thapsigargin and cyclopiazonic acid, specific inhibitors of animal sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, had no effect on PE formation; erythrosin B inhibited with 50% inhibition at <0.1 [mu]M. Calmodulin (1 [mu]M) stimulated PE formation by 25%. The results indicate that the carrot 120-kD Ca2+-ATPase is similar but not identical to animal plasma membrane-type Ca2+- ATPase and yet is located on endomembranes, such as the endoplasmic reticulum. This type of Ca2+ pump may reside on the cortical endoplasmic reticulum, which is thought to play a major role in anchoring the cytoskeleton and in facilitating secretion.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Askerlund P., Evans D. E. Reconstitution and Characterization of a Calmodulin-Stimulated Ca-Pumping ATPase Purified from Brassica oleracea L. Plant Physiol. 1992 Dec;100(4):1670–1681. doi: 10.1104/pp.100.4.1670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal Biochem. 1976 Jan;70(1):241–250. doi: 10.1016/s0003-2697(76)80064-4. [DOI] [PubMed] [Google Scholar]
  3. Briskin D. P. Ca-translocating ATPase of the plant plasma membrane. Plant Physiol. 1990 Oct;94(2):397–400. doi: 10.1104/pp.94.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buckhout T. J. Characterization of Ca Transport in Purified Endoplasmic Reticulum Membrane Vesicles from Lepidium sativum L. Roots. Plant Physiol. 1984 Dec;76(4):962–967. doi: 10.1104/pp.76.4.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carafoli E. The Ca2+ pump of the plasma membrane. J Biol Chem. 1992 Feb 5;267(4):2115–2118. [PubMed] [Google Scholar]
  6. Carnelli A., De Michelis M. I., Rasi-Caldogno F. Plasma Membrane Ca-ATPase of Radish Seedlings : I. Biochemical Characterization Using ITP as a Substrate. Plant Physiol. 1992 Mar;98(3):1196–1201. doi: 10.1104/pp.98.3.1196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goeger D. E., Riley R. T. Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on Ca2+ binding and Ca2+ permeability. Biochem Pharmacol. 1989 Nov 15;38(22):3995–4003. doi: 10.1016/0006-2952(89)90679-5. [DOI] [PubMed] [Google Scholar]
  8. Gräf P., Weiler E. W. Functional Reconstitution of an ATP-Driven Ca-Transport System from the Plasma Membrane of Commelina communis L. Plant Physiol. 1990 Oct;94(2):634–640. doi: 10.1104/pp.94.2.634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hsieh W. L., Pierce W. S., Sze H. Calcium-pumping ATPases in vesicles from carrot cells : stimulation by calmodulin or phosphatidylserine, and formation of a 120 kilodalton phosphoenzyme. Plant Physiol. 1991 Dec;97(4):1535–1544. doi: 10.1104/pp.97.4.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Höfte H., Chrispeels M. J. Protein sorting to the vacuolar membrane. Plant Cell. 1992 Aug;4(8):995–1004. doi: 10.1105/tpc.4.8.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Inesi G., Kurzmack M., Lewis D. Kinetic and equilibrium characterization of an energy-transducing enzyme and its partial reactions. Methods Enzymol. 1988;157:154–190. doi: 10.1016/0076-6879(88)57074-x. [DOI] [PubMed] [Google Scholar]
  12. Rasi-Caldogno F., Pugliarello M. C., Olivari C., De Michelis M. I. Identification and Characterization of the Ca-ATPase which Drives Active Transport of Ca at the Plasma Membrane of Radish Seedlings. Plant Physiol. 1989 Aug;90(4):1429–1434. doi: 10.1104/pp.90.4.1429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schatzmann H. J. The calcium pump of the surface membrane and of the sarcoplasmic reticulum. Annu Rev Physiol. 1989;51:473–485. doi: 10.1146/annurev.ph.51.030189.002353. [DOI] [PubMed] [Google Scholar]
  14. Seidler N. W., Jona I., Vegh M., Martonosi A. Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem. 1989 Oct 25;264(30):17816–17823. [PubMed] [Google Scholar]
  15. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  16. Williams L. E., Schueler S. B., Briskin D. P. Further Characterization of the Red Beet Plasma Membrane Ca-ATPase Using GTP as an Alternative Substrate. Plant Physiol. 1990 Mar;92(3):747–754. doi: 10.1104/pp.92.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wimmers L. E., Ewing N. N., Bennett A. B. Higher plant Ca(2+)-ATPase: primary structure and regulation of mRNA abundance by salt. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9205–9209. doi: 10.1073/pnas.89.19.9205. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES