Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Jul;102(3):725–740. doi: 10.1104/pp.102.3.725

Rapid and Reversible High-Affinity Binding of the Dinitroaniline Herbicide Oryzalin to Tubulin from Zea mays L.

J D Hugdahl 1, L C Morejohn 1
PMCID: PMC158842  PMID: 12231861

Abstract

Oryzalin, a dinitroaniline herbicide, was previously reported to bind to plant tubulin with a moderate strengthe interaction (dissociation constant [Kd] = 8.4 [mu]M) that appeared inconsistent with the nanomolar concentrations of drug that cause the loss of microtubules, inhibit mitosis, and produce herbicidal effects in plants (L.C. Morejohn, T.E. Bureau, J. Mole-Bajer, A.S. Bajer, D.E. Fosket [1987] Planta 172: 252-264). To characterize further the mechanism of action of oryzalin, both kinetic and quasi-equilibrium ligand-binding methods were used to examine the interaction of [14C]-oryzalin with tubulin from cultured cells of maize (Zea mays L. cv Black Mexican Sweet). Oryzalin binds to maize tubulin dimer via a rapid and pH-dependent interaction to form a tubulin-oryzalin complex. Both the tubulin-oryzalin binding strength and stoichiometry are underestimated substantially when measured by kinetic binding methods, because the tubulin-oryzalin complex dissociates rapidly into unliganded tubulin and free oryzalin. Also, an uncharacterized factor(s) that is co-isolated with maize tubulin was found to noncompetitively inhibit oryzalin binding to the dimer. Quasi-equilibrium binding measurements of the tubulin-oryzalin complex using purified maize dimer afforded a Kd of 95 nM (pH 6.9; 23[deg]C) and an estimated maximum molar binding stoichiometry of 0.5. No binding of oryzalin to pure bovine brain tubulin was detected by equilibrium dialysis, and oryzalin has no discernible effect on microtubules in mouse 3T3 fibroblasts, indicating an absence of the oryzalin-binding site on mammalian tubulin. Oryzalin binds to pure taxol-stabilized maize microtubules in a polymer mass- and number-dependent manner, although polymerized tubulin has a much lower oryzalin-binding capacity than unpolymerized tubulin. Much more oryzalin is incorporated into polyment during taxol-induced assembly of pure maize tubulin, and half-maximal inhibition of the rapid phase of taxol-induced polymerization of 5 [mu]M tubulin is obtained with 700 [mu]M oryzalin. The data are consistent with a molecular mechanism whereby oryzalin binds rapidly, reversibly, and with high affinity to the plant tubulin dimer to form a tubulin-oryzalin complex that, at concentrations substoichiometric to tubulin, copolymerizes with unliganded tubulin and slows further assembly. Because half-maximal inhibition of maize callus growth is produced by 37 nM oryzalin, the herbicidal effects of oryzalin appear to result from a substoichiometric poisoning of microtubules.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes L. D., Robinson A. K., Williams R. F., Horowitz P. M. Binding of colchicine to renal tubulin at 5 degrees C. Biochem Biophys Res Commun. 1983 Nov 15;116(3):866–872. doi: 10.1016/s0006-291x(83)80222-8. [DOI] [PubMed] [Google Scholar]
  2. Bordas J., Mandelkow E. M., Mandelkow E. Stages of tubulin assembly and disassembly studied by time-resolved synchrotron X-ray scattering. J Mol Biol. 1983 Feb 15;164(1):89–135. doi: 10.1016/0022-2836(83)90089-x. [DOI] [PubMed] [Google Scholar]
  3. Caplow M., Zeeberg B. Dynamic properties of microtubules at steady state in the presence of taxol. Eur J Biochem. 1982 Oct;127(2):319–324. doi: 10.1111/j.1432-1033.1982.tb06873.x. [DOI] [PubMed] [Google Scholar]
  4. Chan M. M., Triemer R. E., Fong D. Effect of the anti-microtubule drug oryzalin on growth and differentiation of the parasitic protozoan Leishmania mexicana. Differentiation. 1991 Feb;46(1):15–21. doi: 10.1111/j.1432-0436.1991.tb00861.x. [DOI] [PubMed] [Google Scholar]
  5. Collins C. A., Vallee R. B. Temperature-dependent reversible assembly of taxol-treated microtubules. J Cell Biol. 1987 Dec;105(6 Pt 1):2847–2854. doi: 10.1083/jcb.105.6.2847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Frigon R. P., Lee J. C. The stabilization of calf-brain microtubule protein by sucrose. Arch Biochem Biophys. 1972 Dec;153(2):587–589. doi: 10.1016/0003-9861(72)90376-1. [DOI] [PubMed] [Google Scholar]
  7. Hastie S. B. Interactions of colchicine with tubulin. Pharmacol Ther. 1991;51(3):377–401. doi: 10.1016/0163-7258(91)90067-v. [DOI] [PubMed] [Google Scholar]
  8. Hepler P. K. Calcium transients during mitosis: observations in flux. J Cell Biol. 1989 Dec;109(6 Pt 1):2567–2573. doi: 10.1083/jcb.109.6.2567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hess F. D., Bayer D. E. Binding of the herbicide trifluralin to Chlamydomonas flagellar tubulin. J Cell Sci. 1977 Apr;24:351–360. doi: 10.1242/jcs.24.1.351. [DOI] [PubMed] [Google Scholar]
  10. Klotz I. M. Numbers of receptor sites from Scatchard graphs: facts and fantasies. Science. 1982 Sep 24;217(4566):1247–1249. doi: 10.1126/science.6287580. [DOI] [PubMed] [Google Scholar]
  11. Margolis R. L., Wilson L. Addition of colchicine--tubulin complex to microtubule ends: the mechanism of substoichiometric colchicine poisoning. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3466–3470. doi: 10.1073/pnas.74.8.3466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Molè-Bajer J., Bajer A. S. Action of taxol on mitosis: modification of microtubule arrangements and function of the mitotic spindle in Haemanthus endosperm. J Cell Biol. 1983 Feb;96(2):527–540. doi: 10.1083/jcb.96.2.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Morejohn L. C., Fosket D. E. Higher plant tubulin identified by self-assembly into microtubules in vitro. Nature. 1982 Jun 3;297(5865):426–428. doi: 10.1038/297426a0. [DOI] [PubMed] [Google Scholar]
  14. Quader H., Filner P. The action of antimitotic herbicides on flagellar regeneration in Chlamydomonas reinhardtii: a comparison with the action of colchicine. Eur J Cell Biol. 1980 Aug;21(3):301–304. [PubMed] [Google Scholar]
  15. Schiff P. B., Fant J., Horwitz S. B. Promotion of microtubule assembly in vitro by taxol. Nature. 1979 Feb 22;277(5698):665–667. doi: 10.1038/277665a0. [DOI] [PubMed] [Google Scholar]
  16. Schiff P. B., Horwitz S. B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1561–1565. doi: 10.1073/pnas.77.3.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schulze E., Kirschner M. Dynamic and stable populations of microtubules in cells. J Cell Biol. 1987 Feb;104(2):277–288. doi: 10.1083/jcb.104.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stargell L. A., Heruth D. P., Gaertig J., Gorovsky M. A. Drugs affecting microtubule dynamics increase alpha-tubulin mRNA accumulation via transcription in Tetrahymena thermophila. Mol Cell Biol. 1992 Apr;12(4):1443–1450. doi: 10.1128/mcb.12.4.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Surridge C. D., Burns R. G. Identification of an inhibitor of microtubule assembly present in juvenile brain which displays a novel mechanism of action involving suppression of self-nucleation. Biochemistry. 1991 Nov 5;30(44):10813–10817. doi: 10.1021/bi00108a030. [DOI] [PubMed] [Google Scholar]
  20. Upadhyaya M. K., Noodén L. D. Mode of Dinitroaniline Herbicide Action: II. CHARACTERIZATION OF [C]ORYZALIN UPTAKE AND BINDING. Plant Physiol. 1980 Dec;66(6):1048–1052. doi: 10.1104/pp.66.6.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Weisenberg R. C., Borisy G. G., Taylor E. W. The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry. 1968 Dec;7(12):4466–4479. doi: 10.1021/bi00852a043. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES