Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Jul;102(3):761–769. doi: 10.1104/pp.102.3.761

Catalytic Properties of a Newly Discovered Acyltransferase That Synthesizes N-Acylphosphatidylethanolamine in Cottonseed (Gossypium hirsutum L.) Microsomes.

K D Chapman 1, T S Moore Jr 1
PMCID: PMC158845  PMID: 12231864

Abstract

We recently demonstrated that cotyledons of cotton (Gossypium hirsutum L.) seedlings synthesize N-acylphosphatidylethanolamine (NAPE), an unusual acylated derivative of phosphatidylethanolamine (PE), during postgerminative growth (K.D. Chapman and T.S. Moore [1993] Arch Biochem Biophys 301: 21-33). Here, we report the discovery of an acyltransferase enzyme, fatty acid: diacylphosphatidylethanolamine N-acyltransferase (designated NAPE synthase), that synthesizes NAPE from PE and free fatty acids (FFA) in cottonseed microsomes. [14C]NAPE was synthesized from [14C]palmitic acid and endogenous PE in a time-, pH-, temperature-, and protein concentration-dependent manner. [14C]Palmitic acid was incorporated exclusively into the N-acyl position of NAPE. [14C]palmitoyl coenzyme A (CoA) and [14C]-dipalmitoyl phosphatidylcholine (PC) were poor acyl donors for the synthesis of NAPE (i.e. 200- and 3000-fold lower incorporation efficiency than palmitic acid, respectively). Synthesis of NAPE from palmitoyl-CoA and dipalmitoyl-PC was observed only after the release of FFA in microsomes. We observed a temperature optimum of 45[deg]C and a pH optimum of 8.0 for the synthesis of [14C]NAPE from [14C]palmitic acid (or from [14C]PE). NAPE synthase activity showed no apparent divalent cation requirement. Notably, activity was stimulated by HPO42-, HCO3-, SO42-, and NADPH, whereas activity was inhibited by Ca2+, Mn2+, Cd2+, ATP, ADP, flavin adenine disnucleotide, and flavin mononucleotide. Other nucleotide triphosphates (GTP and CTP) and pyridine dinucleotides (NAD, NADH, and NADP) did not appreciably affect NAPE synthase activity. Initial velocity measurements of NAPE synthase activity at increasing concentrations of palmitic acid showed non-Michaelis-Menten, biphasic kinetics. A high-affinity site (S0.5 = 7.2 [mu]M, Vmax = 18.8 nmol h-1 mg-1 of protein) and a low-affinity site (S0.5 = 32.0 [mu]M, Vmax = 44.9 nmol h-1 mg-1 of protein) were identified. Both sites exhibited positive cooperativity. Adding myristic, stearic, or oleic acids at equimolar amounts reduced the incorporation of [14C]palmitic acid into NAPE at low concentrations (10 [mu]M, high-affinity site) but not at high concentrations (50 [mu]M, low-affinity site), indicating that the two putative sites can be distinguished by their fatty acid preferences.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bomstein R. A. A new class of phosphatides isolated from soft wheat flour. Biochem Biophys Res Commun. 1965 Oct 8;21(1):49–54. doi: 10.1016/0006-291x(65)90424-9. [DOI] [PubMed] [Google Scholar]
  2. Chapman K. D., Moore T. S., Jr N-acylphosphatidylethanolamine synthesis in plants: occurrence, molecular composition, and phospholipid origin. Arch Biochem Biophys. 1993 Feb 15;301(1):21–33. doi: 10.1006/abbi.1993.1110. [DOI] [PubMed] [Google Scholar]
  3. Chapman K. D., Trelease R. N. Acquisition of membrane lipids by differentiating glyoxysomes: role of lipid bodies. J Cell Biol. 1991 Nov;115(4):995–1007. doi: 10.1083/jcb.115.4.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dawson R. M., Clarke N., Quarles R. H. N-acylphosphatidylethanolamine, a phospholipid that is rapidly metabolized during the arly germnation of pea seeds. Biochem J. 1969 Sep;114(2):265–267. doi: 10.1042/bj1140265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Epps D. E., Natarajan V., Schmid P. C., Schmid H. O. Accumulation of N-acylethanolamine glycerophospholipids in infarcted myocardium. Biochim Biophys Acta. 1980 Jun 23;618(3):420–430. doi: 10.1016/0005-2760(80)90260-x. [DOI] [PubMed] [Google Scholar]
  6. Epps D. E., Schmid P. C., Natarajan V., Schmid H. H. N-Acylethanolamine accumulation in infarcted myocardium. Biochem Biophys Res Commun. 1979 Sep 27;90(2):628–633. doi: 10.1016/0006-291x(79)91281-6. [DOI] [PubMed] [Google Scholar]
  7. Natarajan V., Schmid P. C., Reddy P. V., Zuzarte-Augustin M. L., Schmid H. H. Occurrence of N-acylethanolamine phospholipids in fish brain and spinal cord. Biochim Biophys Acta. 1985 Jul 31;835(3):426–433. doi: 10.1016/0005-2760(85)90111-0. [DOI] [PubMed] [Google Scholar]
  8. Schmid H. H., Schmid P. C., Natarajan V. N-acylated glycerophospholipids and their derivatives. Prog Lipid Res. 1990;29(1):1–43. doi: 10.1016/0163-7827(90)90004-5. [DOI] [PubMed] [Google Scholar]
  9. Singh H., Privett O. S. Incorporation of 33P in soybean phosphatides. Biochim Biophys Acta. 1970 Feb 10;202(1):200–202. doi: 10.1016/0005-2760(70)90236-5. [DOI] [PubMed] [Google Scholar]
  10. Wilson R. F., Rinne R. W. Phospholipids in the developing soybean seed. Plant Physiol. 1974 Nov;54(5):744–747. doi: 10.1104/pp.54.5.744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. de la Roche I. A., Andrews C. J. Changes in Phospholipid Composition of a Winter Wheat Cultivar during Germination at 2 C and 24 C. Plant Physiol. 1973 Mar;51(3):468–473. doi: 10.1104/pp.51.3.468. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES