Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Jul;102(3):821–828. doi: 10.1104/pp.102.3.821

Identification of the Main Species of Tetrapyrrolic Pigments in Envelope Membranes from Spinach Chloroplasts.

B Pineau 1, C Gerard-Hirne 1, R Douce 1, J Joyard 1
PMCID: PMC158852  PMID: 12231869

Abstract

The chlorophyll precursors protochlorophyllide and chlorophyllide were identified in purified envelope membranes from spinach (Spinacia oleracea) chloroplasts. This was shown after pigment separation by high performance liquid chromatography (HPLC) using specific fluorescence detection for these compounds. Protochlorophyllide and chlorophyllide concentrations in envelope membranes were in the range of 0.1 to 1.5 nmol/mg protein. Chlorophyll content of the envelope membranes was extremely low (0.3 nmol chlorophyll a/mg protein), but the molar ratios of protochlorophyllide and chlorophyllide to chlorophyll were 100 to 1000 times higher in envelope membranes than in thylakoid membranes. Therefore, envelope tetrapyrrolic pigments consist in large part (approximately one-half) of nonphytylated molecules, whereas only 0.1% of the pigments in thylakoids are nonphytylated molecules. Clear-cut separation of protochlorophyllide and chlorophyllide by HPLC allowed us to confirm the presence of a slight protochlorophyllide reductase activity in isolated envelope membranes from fully developed spinach chloroplasts. The enzyme was active only when envelope membranes were illuminated in the presence of NADPH.

Full Text

The Full Text of this article is available as a PDF (747.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amir-Shapira D., Goldschmidt E. E., Altman A. Chlorophyll catabolism in senescing plant tissues: In vivo breakdown intermediates suggest different degradative pathways for Citrus fruit and parsley leaves. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1901–1905. doi: 10.1073/pnas.84.7.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhaya D., Castelfranco P. A. Chlorophyll biosynthesis and assembly into chlorophyll-protein complexes in isolated developing chloroplasts. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5370–5374. doi: 10.1073/pnas.82.16.5370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Block M. A., Joyard J., Douce R. Site of synthesis of geranylgeraniol derivatives in intact spinach chloroplasts. Biochim Biophys Acta. 1980 Aug 1;631(1):210–219. doi: 10.1016/0304-4165(80)90069-0. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Cohen C. E., Rebeiz C. A. Chloroplast Biogenesis 34: SPECTROFLUOROMETRIC CHARACTERIZATION IN SITU OF THE PROTOCHLOROPHYLL SPECIES IN ETIOLATED TISSUES OF HIGHER PLANTS. Plant Physiol. 1981 Jan;67(1):98–103. doi: 10.1104/pp.67.1.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dorne A. J., Joyard J., Douce R. Do thylakoids really contain phosphatidylcholine? Proc Natl Acad Sci U S A. 1990 Jan;87(1):71–74. doi: 10.1073/pnas.87.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Douce R., Holtz R. B., Benson A. A. Isolation and properties of the envelope of spinach chloroplasts. J Biol Chem. 1973 Oct 25;248(20):7215–7222. [PubMed] [Google Scholar]
  8. Fuesler T. P., Wong Y. S., Castelfranco P. A. Localization of Mg-Chelatase and Mg-Protoporphyrin IX Monomethyl Ester (Oxidative) Cyclase Activities within Isolated, Developing Cucumber Chloroplasts. Plant Physiol. 1984 Jul;75(3):662–664. doi: 10.1104/pp.75.3.662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jasper F., Quednau B., Kortenjann M., Johanningmeier U. Control of cab gene expression in synchronized Chlamydomonas reinhardtii cells. J Photochem Photobiol B. 1991 Nov;11(2):139–150. doi: 10.1016/1011-1344(91)80256-h. [DOI] [PubMed] [Google Scholar]
  10. Joyard J., Block M. A., Douce R. Molecular aspects of plastid envelope biochemistry. Eur J Biochem. 1991 Aug 1;199(3):489–509. doi: 10.1111/j.1432-1033.1991.tb16148.x. [DOI] [PubMed] [Google Scholar]
  11. Lee H. J., Ball M. D., Rebeiz C. A. Intraplastidic Localization of the Enzymes That Convert delta-Aminolevulinic Acid to Protoporphyrin IX in Etiolated Cucumber Cotyledons. Plant Physiol. 1991 Jul;96(3):910–915. doi: 10.1104/pp.96.3.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Matringe M., Camadro J. M., Block M. A., Joyard J., Scalla R., Labbe P., Douce R. Localization within chloroplasts of protoporphyrinogen oxidase, the target enzyme for diphenylether-like herbicides. J Biol Chem. 1992 Mar 5;267(7):4646–4651. [PubMed] [Google Scholar]
  13. Nasrulhaq-Boyce A., Griffiths W. T., Jones O. T. The use of continuous assays to characterize the oxidative cyclase that synthesizes the chlorophyll isocyclic ring. Biochem J. 1987 Apr 1;243(1):23–29. doi: 10.1042/bj2430023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Oliver R. P., Griffiths W. T. Pigment-protein complexes of illuminated etiolated leaves. Plant Physiol. 1982 Oct;70(4):1019–1025. doi: 10.1104/pp.70.4.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pineau B., Dubertret G., Joyard J., Douce R. Fluorescence properties of the envelope membranes from spinach chloroplasts. Detection of protochlorophyllide. J Biol Chem. 1986 Jul 15;261(20):9210–9215. [PubMed] [Google Scholar]
  16. Rebeiz C. A., Mattheis J. R., Smith B. B., Rebeiz C. C., Dayton D. F. Chloroplast biogenesis. Biosynthesis and accumulation of protochlorophyll by isolated etioplasts and developing chloroplasts. Arch Biochem Biophys. 1975 Dec;171(2):549–567. doi: 10.1016/0003-9861(75)90065-x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES