Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Jul;102(3):939–945. doi: 10.1104/pp.102.3.939

cDNA cloning of viroid-induced tomato pathogenesis-related protein P23. Characterization as a vacuolar antifungal factor.

I Rodrigo 1, P Vera 1, P Tornero 1, J Hernández-Yago 1, V Conejero 1
PMCID: PMC158867  PMID: 8278538

Abstract

A 23-kD pathogenesis-related protein (P23) is induced in tomato (Lycopersicon esculentum Mill, cv Rutgers) plants when infected with citrus exocortis viroid. This protein is homologous to the salt-induced tomato NP24 protein (I. Rodrigo, P. Vera, R. Frank, V. Conejero [1991] Plant Mol Biol 16: 931-934). Further characterization of P23 has shown that this protein accumulates in vacuoles in association with dense inclusion bodies. In vitro assays indicated that the purified P23 protein inhibits the growth of several phytopathogenic fungi. P23-coding cDNA clones were isolated from viroid-induced and ethylene-induced libraries. Southern analysis showed that at least two genes could encode P23 or P23-related products. The accumulation of P23 protein correlated with the accumulation of its mRNA. Sequence analysis revealed significant differences in both coding and downstream untranslated regions between the cDNA sequences corresponding to the viroid-induced P23 and the salt stress-induced NP24 proteins.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bednarek S. Y., Wilkins T. A., Dombrowski J. E., Raikhel N. V. A carboxyl-terminal propeptide is necessary for proper sorting of barley lectin to vacuoles of tobacco. Plant Cell. 1990 Dec;2(12):1145–1155. doi: 10.1105/tpc.2.12.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowles D. J. Defense-related proteins in higher plants. Annu Rev Biochem. 1990;59:873–907. doi: 10.1146/annurev.bi.59.070190.004301. [DOI] [PubMed] [Google Scholar]
  3. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Geoffroy P., Legrand M., Fritig B. Isolation and characterization of a proteinaceous inhibitor of microbial proteinases induced during the hypersensitive reaction of tobacco to tobacco mosaic virus. Mol Plant Microbe Interact. 1990 Sep-Oct;3(5):327–333. doi: 10.1094/mpmi-3-327. [DOI] [PubMed] [Google Scholar]
  5. Kauffmann S., Legrand M., Geoffroy P., Fritig B. Biological function of ;pathogenesis-related' proteins: four PR proteins of tobacco have 1,3-beta-glucanase activity. EMBO J. 1987 Nov;6(11):3209–3212. doi: 10.1002/j.1460-2075.1987.tb02637.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Logemann J., Schell J., Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal Biochem. 1987 May 15;163(1):16–20. doi: 10.1016/0003-2697(87)90086-8. [DOI] [PubMed] [Google Scholar]
  7. Mauch F., Mauch-Mani B., Boller T. Antifungal Hydrolases in Pea Tissue : II. Inhibition of Fungal Growth by Combinations of Chitinase and beta-1,3-Glucanase. Plant Physiol. 1988 Nov;88(3):936–942. doi: 10.1104/pp.88.3.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Neuhaus J. M., Sticher L., Meins F., Jr, Boller T. A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10362–10366. doi: 10.1073/pnas.88.22.10362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rodrigo I., Vera P., Frank R., Conejero V. Identification of the viroid-induced tomato pathogenesis-related (PR) protein P23 as the thaumatin-like tomato protein NP24 associated with osmotic stress. Plant Mol Biol. 1991 May;16(5):931–934. doi: 10.1007/BF00015088. [DOI] [PubMed] [Google Scholar]
  10. Singh N. K., Bracker C. A., Hasegawa P. M., Handa A. K., Buckel S., Hermodson M. A., Pfankoch E., Regnier F. E., Bressan R. A. Characterization of osmotin : a thaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol. 1987 Oct;85(2):529–536. doi: 10.1104/pp.85.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Vera P., Conejero V. Effect of Ethephon on Protein Degradation and the Accumulation of ;Pathogenesis-Related' (PR) Proteins in Tomato Leaf Discs. Plant Physiol. 1990 Jan;92(1):227–233. doi: 10.1104/pp.92.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Vera P., Conejero V. Pathogenesis-related proteins of tomato : p-69 as an alkaline endoproteinase. Plant Physiol. 1988 May;87(1):58–63. doi: 10.1104/pp.87.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Vera P., Yago J. H., Conejero V. Immunogold localization of the citrus exocortis viroid-induced pathogenesis-related proteinase p69 in tomato leaves. Plant Physiol. 1989 Sep;91(1):119–123. doi: 10.1104/pp.91.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Vigers A. J., Roberts W. K., Selitrennikoff C. P. A new family of plant antifungal proteins. Mol Plant Microbe Interact. 1991 Jul-Aug;4(4):315–323. doi: 10.1094/mpmi-4-315. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES