Abstract
Aluminum (Al) is toxic to plants at pH < 5.0 and can begin to inhibit root growth within 3 h in solution experiments. The mechanism by which this occurs is unclear. Disruption of calcium (Ca) uptake by Al has long been considered a possible cause of toxicity, and recent work with wheat (Triticum aestivum L. Thell) has demonstrated that Ca uptake at the root apex in an Al-sensitive cultivar (Scout 66) was inhibited more than in a tolerant cultivar (Atlas 66) (J.W. Huang, J.E. Shaff, D.L. Grunes, L.V. Kochian [1992] Plant Physiol 98: 230-237). We investigated this interaction further in wheat by measuring root growth and Ca uptake in three separate pairs of near-isogenic lines within which plants exhibit differential sensitivity to Al. The vibrating calcium-selective microelectrode technique was used to estimate net Ca uptake at the root apex of 6-d-old seedlings. Following the addition of 20 or 50 [mu]M AlCl3, exchange of Ca for Al in the root apoplasm caused a net Ca efflux from the root for up to 10 min. After 40 min of exposure to 50 [mu]M Al, cell wall exchange had ceased, and Ca uptake in the Al-sensitive plants of the near-isogenic lines was inhibited, whereas in the tolerant plants it was either unaffected or stimulated. This provides a general correlation between the inhibition of growth by Al and the reduction in Ca influx and adds some support to the hypothesis that a Ca/Al interaction may be involved in the primary mechanism of Al toxicity in roots. In some treatments, however, Al was able to inhibit root growth significantly without affecting net Ca influx. This suggests that the correlation between inhibition of Ca uptake and the reduction in root growth may not be a mechanistic association. The inhibition of Ca uptake by Al is discussed, and we speculate about possible mechanisms of tolerance.
Full Text
The Full Text of this article is available as a PDF (815.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akeson M. A., Munns D. N., Burau R. G. Adsorption of Al3+ to phosphatidylcholine vesicles. Biochim Biophys Acta. 1989 Nov 17;986(1):33–40. doi: 10.1016/0005-2736(89)90269-1. [DOI] [PubMed] [Google Scholar]
- Brehm P., Eckert R. Calcium entry leads to inactivation of calcium channel in Paramecium. Science. 1978 Dec 15;202(4373):1203–1206. doi: 10.1126/science.103199. [DOI] [PubMed] [Google Scholar]
- Caldwell C. R. Analysis of aluminum and divalent cation binding to wheat root plasma membrane proteins using terbium phosphorescence. Plant Physiol. 1989 Sep;91(1):233–241. doi: 10.1104/pp.91.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen J., Sucoff E. I., Stadelmann E. J. Aluminum and Temperature Alteration of Cell Membrane Permeability of Quercus rubra. Plant Physiol. 1991 Jun;96(2):644–649. doi: 10.1104/pp.96.2.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fairley-Grenot K., Assmann S. M. Evidence for G-Protein Regulation of Inward K+ Channel Current in Guard Cells of Fava Bean. Plant Cell. 1991 Sep;3(9):1037–1044. doi: 10.1105/tpc.3.9.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henriksen G. H., Raman D. R., Walker L. P., Spanswick R. M. Measurement of Net Fluxes of Ammonium and Nitrate at the Surface of Barley Roots Using Ion-Selective Microelectrodes : II. Patterns of Uptake Along the Root Axis and Evaluation of the Microelectrode Flux Estimation Technique. Plant Physiol. 1992 Jun;99(2):734–747. doi: 10.1104/pp.99.2.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinraide T. B., Parker D. R. Cation amelioration of aluminum toxicity in wheat. Plant Physiol. 1987 Mar;83(3):546–551. doi: 10.1104/pp.83.3.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinraide T. B., Ryan P. R., Kochian L. V. Interactive effects of Al, h, and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiol. 1992 Aug;99(4):1461–1468. doi: 10.1104/pp.99.4.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lynch J., Cramer G. R., Läuchli A. Salinity reduces membrane-associated calcium in corn root protoplasts. Plant Physiol. 1987 Feb;83(2):390–394. doi: 10.1104/pp.83.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newman I. A., Kochian L. V., Grusak M. A., Lucas W. J. Fluxes of h and k in corn roots : characterization and stoichiometries using ion-selective microelectrodes. Plant Physiol. 1987 Aug;84(4):1177–1184. doi: 10.1104/pp.84.4.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schroeder J. I. K+ transport properties of K+ channels in the plasma membrane of Vicia faba guard cells. J Gen Physiol. 1988 Nov;92(5):667–683. doi: 10.1085/jgp.92.5.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theuvenet A. P., Borst-Pauwels G. W. The influence of surface charge on the kinetics of ion-translocation across biological membranes. J Theor Biol. 1976 Apr;57(2):313–329. doi: 10.1016/0022-5193(76)90004-7. [DOI] [PubMed] [Google Scholar]
- Vierstra R., Haug A. The effect of A13+ on the physical properties of membrane lipids in Thermoplasma acidophilum. Biochem Biophys Res Commun. 1978 Sep 14;84(1):138–143. doi: 10.1016/0006-291x(78)90274-7. [DOI] [PubMed] [Google Scholar]
- Zhao X. J., Sucoff E., Stadelmann E. J. Al and Ca Alteration of Membrane Permeability of Quercus rubra Root Cortex Cells. Plant Physiol. 1987 Jan;83(1):159–162. doi: 10.1104/pp.83.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]